These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 17554827)

  • 1. A benchtop system to assess cortical neural interface micromechanics.
    Das R; Gandhi D; Krishnan S; Saggere L; Rousche PJ
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1089-96. PubMed ID: 17554827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vivo implant mechanics of flexible, silicon-based ACREO microelectrode arrays in rat cerebral cortex.
    Jensen W; Yoshida K; Hofmann UG
    IEEE Trans Biomed Eng; 2006 May; 53(5):934-40. PubMed ID: 16686416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagenase-aided intracortical microelectrode array insertion: effects on insertion force and recording performance.
    Paralikar KJ; Clement RS
    IEEE Trans Biomed Eng; 2008 Sep; 55(9):2258-67. PubMed ID: 18713695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic human tissue models can reduce the cost of device development.
    Sakezles C
    Med Device Technol; 2009; 20(1):32-4. PubMed ID: 19370914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests.
    Zahouani H; Pailler-Mattei C; Sohm B; Vargiolu R; Cenizo V; Debret R
    Skin Res Technol; 2009 Feb; 15(1):68-76. PubMed ID: 19152581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A tissue explant system for assessing tendon overuse injury.
    Devkota AC; Weinhold PS
    Med Eng Phys; 2005 Nov; 27(9):803-8. PubMed ID: 15876547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical characterization of needle piercing into peripheral nervous tissue.
    Sergi PN; Carrozza MC; Dario P; Micera S
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2373-86. PubMed ID: 17073344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural modifications in chronic microwire electrodes for cortical neuroprosthetics: a case study.
    Sanchez JC; Alba N; Nishida T; Batich C; Carney PR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):217-21. PubMed ID: 16792298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical analysis of silicon microelectrode-induced strain in the brain.
    Lee H; Bellamkonda RV; Sun W; Levenston ME
    J Neural Eng; 2005 Dec; 2(4):81-9. PubMed ID: 16317231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal impact of an active 3-D microelectrode array implanted in the brain.
    Kim S; Tathireddy P; Normann RA; Solzbacher F
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):493-501. PubMed ID: 18198706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Work behaviors of artificial muscle based on cation driven polypyrrole.
    Fujisue H; Sendai T; Yamato K; Takashima W; Kaneto K
    Bioinspir Biomim; 2007 Jun; 2(2):S1-5. PubMed ID: 17671325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotube coating improves neuronal recordings.
    Keefer EW; Botterman BR; Romero MI; Rossi AF; Gross GW
    Nat Nanotechnol; 2008 Jul; 3(7):434-9. PubMed ID: 18654569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue testing of three peristernal median sternotomy closure techniques.
    Wangsgard C; Cohen DJ; Griffin LV
    J Cardiothorac Surg; 2008 Sep; 3():52. PubMed ID: 18816402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implant-bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis.
    Ding X; Zhu XH; Liao SH; Zhang XH; Chen H
    J Prosthodont; 2009 Jul; 18(5):393-402. PubMed ID: 19374710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term changes in the material properties of brain tissue at the implant-tissue interface.
    Sridharan A; Rajan SD; Muthuswamy J
    J Neural Eng; 2013 Dec; 10(6):066001. PubMed ID: 24099854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single versus double ended high frequency pressurization of mock arteries: symmetry of expansion.
    Rajesh R; Conti JC; Strope ER
    Biomed Sci Instrum; 2006; 42():446-51. PubMed ID: 16817649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extraction force and cortical tissue reaction of silicon microelectrode arrays implanted in the rat brain.
    McConnell GC; Schneider TM; Owens DJ; Bellamkonda RV
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1097-107. PubMed ID: 17554828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical evaluation method for catheter prototypes using photo-elastic stress analysis on patient-specific vascular model.
    Tercero C; Okada Y; Ikeda S; Fukuda T; Sekiyama K; Negoro M; Takahashi I
    Int J Med Robot; 2007 Dec; 3(4):349-54. PubMed ID: 18200627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and validation of a system to simulate coronary flexure dynamics on arterial segments perfused ex vivo.
    VanEpps JS; Londono R; Nieponice A; Vorp DA
    Biomech Model Mechanobiol; 2009 Feb; 8(1):57-66. PubMed ID: 18297319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging.
    Shan B; Pelegri AA; Maleke C; Konofagou EE
    J Biomech; 2008 Jul; 41(10):2150-8. PubMed ID: 18571182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.