These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 17555252)

  • 1. Energy dependence of commercially available diode detectors for in-vivo dosimetry.
    Saini AS; Zhu TC
    Med Phys; 2007 May; 34(5):1704-11. PubMed ID: 17555252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose rate and SDD dependence of commercially available diode detectors.
    Saini AS; Zhu TC
    Med Phys; 2004 Apr; 31(4):914-24. PubMed ID: 15125010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comment on "Energy dependence of commercially available diode detectors for in-vivo dosimetry" [Med. Phys. 34, 1704-1711 (2007)].
    Verma D; Selvam TP; Arun C; Munshi P
    Med Phys; 2010 Aug; 37(8):4517-9. PubMed ID: 20879610
    [No Abstract]   [Full Text] [Related]  

  • 4. In vivo dosimetry using a single diode for megavoltage photon beam radiotherapy: implementation and response characterization.
    Colussi VC; Beddar AS; Kinsella TJ; Sibata CH
    J Appl Clin Med Phys; 2001; 2(4):210-8. PubMed ID: 11686742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of commercially available diode detectors.
    Saini AS; Zhu TC
    Med Phys; 2002 Apr; 29(4):622-30. PubMed ID: 11991134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angular independent silicon detector for dosimetry in external beam radiotherapy.
    Petasecca M; Alhujaili S; Aldosari AH; Fuduli I; Newall M; Porumb CS; Carolan M; Nitschke K; Lerch ML; Kalliopuska J; Perevertaylo V; Rosenfeld AB
    Med Phys; 2015 Aug; 42(8):4708-18. PubMed ID: 26233198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the response of commercial diode detectors used for in vivo dosimetry.
    Meiler RJ; Podgorsak MB
    Med Dosim; 1997; 22(1):31-7. PubMed ID: 9136105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo dosimetry with optically stimulated luminescent dosimeters, OSLDs, compared to diodes; the effects of buildup cap thickness and fabrication material.
    Jursinic PA; Yahnke CJ
    Med Phys; 2011 Oct; 38(10):5432-40. PubMed ID: 21992362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of a portal imaging device for high-precision dosimetry: a Monte Carlo study.
    Keller H; Fix M; Rüegsegger P
    Med Phys; 1998 Oct; 25(10):1891-902. PubMed ID: 9800696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo-based energy response studies of diode dosimeters in radiotherapy photon beams.
    Arun C; Palani Selvam T; Dinkar V; Munshi P; Kalra MS
    Radiol Phys Technol; 2013 Jan; 6(1):151-6. PubMed ID: 23180010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo study of a Cyberknife stereotactic radiosurgery system.
    Araki F
    Med Phys; 2006 Aug; 33(8):2955-63. PubMed ID: 16964874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a high-energy photon beam.
    Ding GX
    Med Phys; 2002 Nov; 29(11):2459-63. PubMed ID: 12462709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Output correction factors for nine small field detectors in 6 MV radiation therapy photon beams: a PENELOPE Monte Carlo study.
    Benmakhlouf H; Sempau J; Andreo P
    Med Phys; 2014 Apr; 41(4):041711. PubMed ID: 24694131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the KQclinfclin,Qmsr fmsr correction factors for detectors used with an 800 MU/min CyberKnife(®) system equipped with fixed collimators and a study of detector response to small photon beams using a Monte Carlo method.
    Moignier C; Huet C; Makovicka L
    Med Phys; 2014 Jul; 41(7):071702. PubMed ID: 24989371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid water as phantom material for dosimetry of electron backscatter using low-energy electron beams: a Monte Carlo evaluation.
    Chow JC; Owrangi AM
    Med Phys; 2009 May; 36(5):1587-94. PubMed ID: 19544774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of dose near a nonradioactive gold seed.
    Chow JC; Grigorov GN
    Med Phys; 2006 Dec; 33(12):4614-21. PubMed ID: 17278814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commissioning stereotactic radiosurgery beams using both experimental and theoretical methods.
    Ding GX; Duggan DM; Coffey CW
    Phys Med Biol; 2006 May; 51(10):2549-66. PubMed ID: 16675869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo modelling of diode detectors for small field MV photon dosimetry: detector model simplification and the sensitivity of correction factors to source parameterization.
    Cranmer-Sargison G; Weston S; Evans JA; Sidhu NP; Thwaites DI
    Phys Med Biol; 2012 Aug; 57(16):5141-53. PubMed ID: 22842678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pencil beam approach for correcting the energy dependence artifact in film dosimetry for IMRT verification.
    Kirov AS; Caravelli G; Palm A; Chui C; LoSasso T
    Med Phys; 2006 Oct; 33(10):3690-9. PubMed ID: 17089835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of MOSFET detectors for high-energy photon beams using the PENELOPE code.
    Panettieri V; Duch MA; Jornet N; Ginjaume M; Carrasco P; Badal A; Ortega X; Ribas M
    Phys Med Biol; 2007 Jan; 52(1):303-16. PubMed ID: 17183143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.