These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 17555271)
21. The RasGEF FgCdc25 regulates fungal development and virulence in Fusarium graminearum via cAMP and MAPK signalling pathways. Chen A; Ju Z; Wang J; Wang J; Wang H; Wu J; Yin Y; Zhao Y; Ma Z; Chen Y Environ Microbiol; 2020 Dec; 22(12):5109-5124. PubMed ID: 32537857 [TBL] [Abstract][Full Text] [Related]
22. Fusarium graminearum TRI14 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. Dyer RB; Plattner RD; Kendra DF; Brown DW J Agric Food Chem; 2005 Nov; 53(23):9281-7. PubMed ID: 16277434 [TBL] [Abstract][Full Text] [Related]
23. Transcriptome analysis of the barley-Fusarium graminearum interaction. Boddu J; Cho S; Kruger WM; Muehlbauer GJ Mol Plant Microbe Interact; 2006 Apr; 19(4):407-17. PubMed ID: 16610744 [TBL] [Abstract][Full Text] [Related]
24. Differential roles of three FgPLD genes in regulating development and pathogenicity in Fusarium graminearum. Ding M; Zhu Q; Liang Y; Li J; Fan X; Yu X; He F; Xu H; Liang Y; Yu J Fungal Genet Biol; 2017 Dec; 109():46-52. PubMed ID: 29079075 [TBL] [Abstract][Full Text] [Related]
25. Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Nguyen LN; Bormann J; Le GT; Stärkel C; Olsson S; Nosanchuk JD; Giese H; Schäfer W Fungal Genet Biol; 2011 Mar; 48(3):217-24. PubMed ID: 21094265 [TBL] [Abstract][Full Text] [Related]
26. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Desjardins AE; Proctor RH Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953 [TBL] [Abstract][Full Text] [Related]
27. FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Wu J; Liu Y; Lv W; Yue X; Que Y; Yang N; Zhang Z; Ma Z; Talbot NJ; Wang Z Fungal Genet Biol; 2015 Oct; 83():92-102. PubMed ID: 26341536 [TBL] [Abstract][Full Text] [Related]
28. Two mitogen-activated protein kinase signalling cascades mediate basal resistance to antifungal plant defensins in Fusarium graminearum. Ramamoorthy V; Zhao X; Snyder AK; Xu JR; Shah DM Cell Microbiol; 2007 Jun; 9(6):1491-506. PubMed ID: 17253976 [TBL] [Abstract][Full Text] [Related]
29. Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Gardiner DM; Kazan K; Manners JM Mol Plant Microbe Interact; 2009 Dec; 22(12):1588-600. PubMed ID: 19888824 [TBL] [Abstract][Full Text] [Related]
30. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Jiang C; Zhang C; Wu C; Sun P; Hou R; Liu H; Wang C; Xu JR Environ Microbiol; 2016 Nov; 18(11):3689-3701. PubMed ID: 26940955 [TBL] [Abstract][Full Text] [Related]
31. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Yin T; Zhang Q; Wang J; Liu H; Wang C; Xu JR; Jiang C Mol Plant Pathol; 2018 Mar; 19(3):552-563. PubMed ID: 28142217 [TBL] [Abstract][Full Text] [Related]
32. The Sch9 kinase regulates conidium size, stress responses, and pathogenesis in Fusarium graminearum. Chen D; Wang Y; Zhou X; Wang Y; Xu JR PLoS One; 2014; 9(8):e105811. PubMed ID: 25144230 [TBL] [Abstract][Full Text] [Related]
33. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Harris LJ; Balcerzak M; Johnston A; Schneiderman D; Ouellet T Fungal Biol; 2016 Jan; 120(1):111-23. PubMed ID: 26693688 [TBL] [Abstract][Full Text] [Related]
34. Fusarium graminearum from expression analysis to functional assays. Hallen-Adams HE; Cavinder BL; Trail F Methods Mol Biol; 2011; 722():79-101. PubMed ID: 21590414 [TBL] [Abstract][Full Text] [Related]
35. Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Güldener U; Seong KY; Boddu J; Cho S; Trail F; Xu JR; Adam G; Mewes HW; Muehlbauer GJ; Kistler HC Fungal Genet Biol; 2006 May; 43(5):316-25. PubMed ID: 16531083 [TBL] [Abstract][Full Text] [Related]
36. EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. Zhao C; Waalwijk C; de Wit PJ; van der Lee T; Tang D Mol Plant Microbe Interact; 2011 Dec; 24(12):1407-18. PubMed ID: 21830952 [TBL] [Abstract][Full Text] [Related]
37. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum. Lee Y; Min K; Son H; Park AR; Kim JC; Choi GJ; Lee YW Mol Plant Microbe Interact; 2014 Dec; 27(12):1344-55. PubMed ID: 25083910 [TBL] [Abstract][Full Text] [Related]
38. Functional identification of high-affinity iron permeases from Fusarium graminearum. Park YS; Choi ID; Kang CM; Ham MS; Kim JH; Kim TH; Yun SH; Lee YW; Chang HI; Sung HC; Yun CW Fungal Genet Biol; 2006 Apr; 43(4):273-82. PubMed ID: 16464625 [TBL] [Abstract][Full Text] [Related]
39. The transcription factor FgCrz1A is essential for fungal development, virulence, deoxynivalenol biosynthesis and stress responses in Fusarium graminearum. Chen L; Tong Q; Zhang C; Ding K Curr Genet; 2019 Feb; 65(1):153-166. PubMed ID: 29947970 [TBL] [Abstract][Full Text] [Related]
40. BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize. Horevaj P; Bluhm BH Mol Plant Pathol; 2012 Jun; 13(5):431-44. PubMed ID: 22044756 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]