These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 17555271)
41. Functional characterization of Rho family small GTPases in Fusarium graminearum. Zhang C; Wang Y; Wang J; Zhai Z; Zhang L; Zheng W; Zheng W; Yu W; Zhou J; Lu G; Shim WB; Wang Z Fungal Genet Biol; 2013 Dec; 61():90-9. PubMed ID: 24055721 [TBL] [Abstract][Full Text] [Related]
42. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Zhu Q; Sun L; Lian J; Gao X; Zhao L; Ding M; Li J; Liang Y Fungal Genet Biol; 2016 Dec; 97():1-9. PubMed ID: 27777035 [TBL] [Abstract][Full Text] [Related]
43. The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum. Wang G; Wang C; Hou R; Zhou X; Li G; Zhang S; Xu JR PLoS One; 2012; 7(5):e38324. PubMed ID: 22693618 [TBL] [Abstract][Full Text] [Related]
44. The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat. Bormann J; Boenisch MJ; Brückner E; Firat D; Schäfer W PLoS One; 2014; 9(3):e91135. PubMed ID: 24603887 [TBL] [Abstract][Full Text] [Related]
45. Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Malz S; Grell MN; Thrane C; Maier FJ; Rosager P; Felk A; Albertsen KS; Salomon S; Bohn L; Schäfer W; Giese H Fungal Genet Biol; 2005 May; 42(5):420-33. PubMed ID: 15809006 [TBL] [Abstract][Full Text] [Related]
46. Functional analysis of the Fusarium graminearum phosphatome. Yun Y; Liu Z; Yin Y; Jiang J; Chen Y; Xu JR; Ma Z New Phytol; 2015 Jul; 207(1):119-134. PubMed ID: 25758923 [TBL] [Abstract][Full Text] [Related]
47. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Jenczmionka NJ; Maier FJ; Lösch AP; Schäfer W Curr Genet; 2003 May; 43(2):87-95. PubMed ID: 12695848 [TBL] [Abstract][Full Text] [Related]
48. PDC1, a corn defensin peptide expressed in Escherichia coli and Pichia pastoris inhibits growth of Fusarium graminearum. Kant P; Liu WZ; Pauls KP Peptides; 2009 Sep; 30(9):1593-9. PubMed ID: 19505517 [TBL] [Abstract][Full Text] [Related]
49. FgKin1 kinase localizes to the septal pore and plays a role in hyphal growth, ascospore germination, pathogenesis, and localization of Tub1 beta-tubulins in Fusarium graminearum. Luo Y; Zhang H; Qi L; Zhang S; Zhou X; Zhang Y; Xu JR New Phytol; 2014 Dec; 204(4):943-54. PubMed ID: 25078365 [TBL] [Abstract][Full Text] [Related]
50. FgSKN7 and FgATF1 have overlapping functions in ascosporogenesis, pathogenesis and stress responses in Fusarium graminearum. Jiang C; Zhang S; Zhang Q; Tao Y; Wang C; Xu JR Environ Microbiol; 2015 Apr; 17(4):1245-60. PubMed ID: 25040476 [TBL] [Abstract][Full Text] [Related]
51. Aquaporin1 regulates development, secondary metabolism and stress responses in Fusarium graminearum. Ding M; Li J; Fan X; He F; Yu X; Chen L; Zou S; Liang Y; Yu J Curr Genet; 2018 Oct; 64(5):1057-1069. PubMed ID: 29502265 [TBL] [Abstract][Full Text] [Related]
52. RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Fang HM; Wang Y Mol Microbiol; 2006 Jul; 61(2):484-96. PubMed ID: 16856944 [TBL] [Abstract][Full Text] [Related]
53. Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Brauer EK; Manes N; Bonner C; Subramaniam R Fungal Genet Biol; 2020 Jan; 134():103277. PubMed ID: 31605748 [TBL] [Abstract][Full Text] [Related]
54. Measuring protein kinase and sugar kinase activity in plant pathogenic fusarium species. Bluhm BH; Zhao X Methods Mol Biol; 2010; 638():201-10. PubMed ID: 20238271 [TBL] [Abstract][Full Text] [Related]
55. FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum. Zhang C; Lin Y; Wang J; Wang Y; Chen M; Norvienyeku J; Li G; Yu W; Wang Z FEMS Microbiol Lett; 2016 Jan; 363(1):fnv223. PubMed ID: 26607286 [TBL] [Abstract][Full Text] [Related]
56. RNA silencing of mycotoxin production in Aspergillus and Fusarium species. McDonald T; Brown D; Keller NP; Hammond TM Mol Plant Microbe Interact; 2005 Jun; 18(6):539-45. PubMed ID: 15986923 [TBL] [Abstract][Full Text] [Related]
57. An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection. Jiang C; Cao S; Wang Z; Xu H; Liang J; Liu H; Wang G; Ding M; Wang Q; Gong C; Feng C; Hao C; Xu JR Nat Microbiol; 2019 Sep; 4(9):1582-1591. PubMed ID: 31160822 [TBL] [Abstract][Full Text] [Related]
58. Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Stephens AE; Gardiner DM; White RG; Munn AL; Manners JM Mol Plant Microbe Interact; 2008 Dec; 21(12):1571-81. PubMed ID: 18986253 [TBL] [Abstract][Full Text] [Related]
59. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Josefsen L; Droce A; Sondergaard TE; Sørensen JL; Bormann J; Schäfer W; Giese H; Olsson S Autophagy; 2012 Mar; 8(3):326-37. PubMed ID: 22240663 [TBL] [Abstract][Full Text] [Related]
60. Two FgLEU2 Genes with Different Roles in Leucine Biosynthesis and Infection-Related Morphogenesis in Fusarium graminearum. Liu X; Han Q; Wang J; Wang X; Xu J; Shi J PLoS One; 2016; 11(11):e0165927. PubMed ID: 27835660 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]