These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17555303)

  • 21. Theoretical QM/MM studies of enzymatic pericyclic reactions.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Interdiscip Sci; 2010 Mar; 2(1):115-31. PubMed ID: 20640801
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paths to which the nudged elastic band converges.
    Sheppard D; Henkelman G
    J Comput Chem; 2011 Jun; 32(8):1769-71; author reply 1772-3. PubMed ID: 21328409
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Just a near attack conformer for catalysis (chorismate to prephenate rearrangements in water, antibody, enzymes, and their mutants).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Sep; 125(35):10540-2. PubMed ID: 12940735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple-steering QM-MM calculation of the free energy profile in chorismate mutase.
    Crespo A; Martí MA; Estrin DA; Roitberg AE
    J Am Chem Soc; 2005 May; 127(19):6940-1. PubMed ID: 15884923
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study of claisen and cope rearrangements catalyzed by chorismate mutase. An insight into enzymatic efficiency: transition state stabilization or substrate preorganization?
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    J Am Chem Soc; 2004 Jan; 126(1):311-9. PubMed ID: 14709097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct determination of reaction paths and stationary points on potential of mean force surfaces.
    Li G; Cui Q
    J Mol Graph Model; 2005 Oct; 24(2):82-93. PubMed ID: 16005650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymes do what is expected (chalcone isomerase versus chorismate mutase).
    Hur S; Bruice TC
    J Am Chem Soc; 2003 Feb; 125(6):1472-3. PubMed ID: 12568595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishing Effective Simulation Protocols for β- and α/β-Mixed Peptides. I. QM and QM/MM Models.
    Zhu X; Yethiraj A; Cui Q
    J Chem Theory Comput; 2007 Jul; 3(4):1538-49. PubMed ID: 26633224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of point mutation on enzymatic activity: correlation between protein electronic structure and motion in chorismate mutase reaction.
    Ishida T
    J Am Chem Soc; 2010 May; 132(20):7104-18. PubMed ID: 20426479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping enzymatic catalysis using the effective fragment molecular orbital method: towards all ab initio biochemistry.
    Steinmann C; Fedorov DG; Jensen JH
    PLoS One; 2013; 8(4):e60602. PubMed ID: 23593259
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contributions of conformational compression and preferential transition state stabilization to the rate enhancement by chorismate mutase.
    Guimarães CR; Repasky MP; Chandrasekhar J; Tirado-Rives J; Jorgensen WL
    J Am Chem Soc; 2003 Jun; 125(23):6892-9. PubMed ID: 12783541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preorganization and reorganization as related factors in enzyme catalysis: the chorismate mutase case.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2003 Feb; 9(4):984-91. PubMed ID: 12584715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Projector-Based Embedding Eliminates Density Functional Dependence for QM/MM Calculations of Reactions in Enzymes and Solution.
    Ranaghan KE; Shchepanovska D; Bennie SJ; Lawan N; Macrae SJ; Zurek J; Manby FR; Mulholland AJ
    J Chem Inf Model; 2019 May; 59(5):2063-2078. PubMed ID: 30794388
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the efficiency of the NEB reaction path finding algorithm.
    Galván IF; Field MJ
    J Comput Chem; 2008 Jan; 29(1):139-43. PubMed ID: 17546677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta.
    Bojin MD; Schlick T
    J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Convergence in the QM-only and QM/MM modeling of enzymatic reactions: A case study for acetylene hydratase.
    Liao RZ; Thiel W
    J Comput Chem; 2013 Oct; 34(27):2389-97. PubMed ID: 23913757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic minimum free energy path calculations using swarms of trajectories.
    Sanchez-Martinez M; Field M; Crehuet R
    J Phys Chem B; 2015 Jan; 119(3):1103-13. PubMed ID: 25286154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A critical evaluation of different QM/MM frontier treatments with SCC-DFTB as the QM method.
    König PH; Hoffmann M; Frauenheim T; Cui Q
    J Phys Chem B; 2005 May; 109(18):9082-95. PubMed ID: 16852081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.