These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The treatment of solvation by a generalized Born model and a self-consistent charge-density functional theory-based tight-binding method. Xie L; Liu H J Comput Chem; 2002 Nov; 23(15):1404-15. PubMed ID: 12370943 [TBL] [Abstract][Full Text] [Related]
6. Looking at self-consistent-charge density functional tight binding from a semiempirical perspective. Otte N; Scholten M; Thiel W J Phys Chem A; 2007 Jul; 111(26):5751-5. PubMed ID: 17385847 [TBL] [Abstract][Full Text] [Related]
7. Analytical second-order geometrical derivatives of energy for the self-consistent-charge density-functional tight-binding method. Witek HA; Irle S; Morokuma K J Chem Phys; 2004 Sep; 121(11):5163-70. PubMed ID: 15352808 [TBL] [Abstract][Full Text] [Related]
8. Systematic study of vibrational frequencies calculated with the self-consistent charge density functional tight-binding method. Witek HA; Morokuma K J Comput Chem; 2004 Nov; 25(15):1858-64. PubMed ID: 15376252 [TBL] [Abstract][Full Text] [Related]
9. Semiempirical PM5 molecular orbital study on chlorophylls and bacteriochlorophylls: comparison of semiempirical, ab initio, and density functional results. Linnanto J; Korppi-Tommola J J Comput Chem; 2004 Jan; 25(1):123-38. PubMed ID: 14635000 [TBL] [Abstract][Full Text] [Related]
10. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations. Maupin CM; Aradi B; Voth GA J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461 [TBL] [Abstract][Full Text] [Related]
11. Reliable predictions of the thermochemistry of boron-nitrogen hydrogen storage compounds: BxNxHy, x = 2, 3. Matus MH; Anderson KD; Camaioni DM; Autrey ST; Dixon DA J Phys Chem A; 2007 May; 111(20):4411-21. PubMed ID: 17444621 [TBL] [Abstract][Full Text] [Related]
12. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Schwabe T; Grimme S Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790 [TBL] [Abstract][Full Text] [Related]
13. Automatized parametrization of SCC-DFTB repulsive potentials: application to hydrocarbons. Gaus M; Chou CP; Witek H; Elstner M J Phys Chem A; 2009 Oct; 113(43):11866-81. PubMed ID: 19778029 [TBL] [Abstract][Full Text] [Related]
14. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory. Zope RR; Dunlap BI J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149 [TBL] [Abstract][Full Text] [Related]
15. Improved semiempirical heats of formation through the use of bond and group equivalents. Repasky MP; Chandrasekhar J; Jorgensen WL J Comput Chem; 2002 Mar; 23(4):498-510. PubMed ID: 11908087 [TBL] [Abstract][Full Text] [Related]
16. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. Grimme S J Phys Chem A; 2005 Apr; 109(13):3067-77. PubMed ID: 16833631 [TBL] [Abstract][Full Text] [Related]
17. Modeling carbon nanostructures with the self-consistent charge density-functional tight-binding method: vibrational spectra and electronic structure of C(28), C(60), and C(70). Witek HA; Irle S; Zheng G; de Jong WA; Morokuma K J Chem Phys; 2006 Dec; 125(21):214706. PubMed ID: 17166039 [TBL] [Abstract][Full Text] [Related]
18. Thermochemistry, bond energies, and internal rotor potentials of dimethyl tetraoxide. da Silva G; Bozzelli JW J Phys Chem A; 2007 Nov; 111(47):12026-36. PubMed ID: 17983209 [TBL] [Abstract][Full Text] [Related]
19. Self-consistent polarization neglect of diatomic differential overlap: application to water clusters. Chang DT; Schenter GK; Garrett BC J Chem Phys; 2008 Apr; 128(16):164111. PubMed ID: 18447425 [TBL] [Abstract][Full Text] [Related]