These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 17555335)

  • 21. Electrolyte-added one-pot synthesis for producing monodisperse, micrometer-sized silica particles up to 7 microm.
    Nakabayashi H; Yamada A; Noba M; Kobayashi Y; Konno M; Nagao D
    Langmuir; 2010 May; 26(10):7512-5. PubMed ID: 20163080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of Cryptosporidium parvum oocysts in water using ultrasonic treatment.
    Olvera M; Eguía A; Rodríguez O; Chong E; Pillai SD; Ilangovan K
    Bioresour Technol; 2008 Apr; 99(6):2046-9. PubMed ID: 17498946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cryptosporidium oocyst surface macromolecules significantly hinder oocyst attachment.
    Kuznar ZA; Elimelech M
    Environ Sci Technol; 2006 Mar; 40(6):1837-42. PubMed ID: 16570605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of organic carbon loading, sediment associated metal oxide content and sediment grain size distributions upon Cryptosporidium parvum removal during riverbank filtration operations, Sonoma County, CA.
    Metge DW; Harvey RW; Aiken GR; Anders R; Lincoln G; Jasperse J
    Water Res; 2010 Feb; 44(4):1126-37. PubMed ID: 20116824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes.
    Dishon M; Zohar O; Sivan U
    Langmuir; 2011 Nov; 27(21):12977-84. PubMed ID: 21877732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of Cryptosporidium parvum with suspended particles: impact on oocyst sedimentation.
    Searcy KE; Packman AI; Atwill ER; Harter T
    Appl Environ Microbiol; 2005 Feb; 71(2):1072-8. PubMed ID: 15691968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of viability and infectivity of Cryptosporidium parvum oocysts stored in potassium dichromate solution and chlorinated tap water.
    Chen F; Huang K; Qin S; Zhao Y; Pan C
    Vet Parasitol; 2007 Nov; 150(1-2):13-7. PubMed ID: 17954011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for the existence of Cryptosporidium oocysts as single entities in surface runoff.
    Kaucner C; Davies CM; Ferguson CM; Ashbolt NJ
    Water Sci Technol; 2005; 52(8):199-204. PubMed ID: 16312968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Significance of wall structure, macromolecular composition, and surface polymers to the survival and transport of Cryptosporidium parvum oocysts.
    Jenkins MB; Eaglesham BS; Anthony LC; Kachlany SC; Bowman DD; Ghiorse WC
    Appl Environ Microbiol; 2010 Mar; 76(6):1926-34. PubMed ID: 20097810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The efficiency of ozonated water from a water treatment plant to inactivate Cryptosporidium oocysts during two seasonal temperatures.
    Wohlsen T; Stewart S; Aldridge P; Bates J; Gray B; Katouli M
    J Water Health; 2007 Sep; 5(3):433-40. PubMed ID: 17878558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts.
    Bradford SA; Kim H; Headd B; Torkzaban S
    Environ Sci Technol; 2016 Feb; 50(3):1295-303. PubMed ID: 26720840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AFM forces between mica and polystyrene surfaces in aqueous electrolyte solutions with and without gas bubbles.
    Saavedra JH; Acuña SM; Toledo PG
    J Colloid Interface Sci; 2013 Nov; 410():188-94. PubMed ID: 23998373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deformability Assessment of Waterborne Protozoa Using a Microfluidic-Enabled Force Microscopy Probe.
    McGrath JS; Quist J; Seddon JR; Lai SC; Lemay SG; Bridle HL
    PLoS One; 2016; 11(3):e0150438. PubMed ID: 26938220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles.
    Horozov TS; Binks BP; Gottschalk-Gaudig T
    Phys Chem Chem Phys; 2007 Dec; 9(48):6398-404. PubMed ID: 18060170
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oocysts of Cryptosporidium parvum and model sand surfaces in aqueous solutions: an atomic force microscope (AFM) study.
    Considine RF; Dixon DR; Drummond CJ
    Water Res; 2002 Aug; 36(14):3421-8. PubMed ID: 12230187
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction forces between waterborne bacteria and activated carbon particles.
    Busscher HJ; Dijkstra RJ; Langworthy DE; Collias DI; Bjorkquist DW; Mitchell MD; Van der Mei HC
    J Colloid Interface Sci; 2008 Jun; 322(1):351-7. PubMed ID: 18405910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solar UV reduces Cryptosporidium parvum oocyst infectivity in environmental waters.
    King BJ; Hoefel D; Daminato DP; Fanok S; Monis PT
    J Appl Microbiol; 2008 May; 104(5):1311-23. PubMed ID: 18248370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-situ monitoring of Cryptosporidium parvum oocyst surface adhesion using ATR-FTIR spectroscopy.
    Gao X; Chorover J
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):169-76. PubMed ID: 19269797
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time microgravimetric quantification of Cryptosporidium parvum in the presence of potential interferents.
    Poitras C; Fatisson J; Tufenkji N
    Water Res; 2009 Jun; 43(10):2631-8. PubMed ID: 19375770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.