These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 17555439)
1. Defining Candida albicans stationary phase by cellular and DNA replication, gene expression and regulation. Uppuluri P; Chaffin WL Mol Microbiol; 2007 Jun; 64(6):1572-86. PubMed ID: 17555439 [TBL] [Abstract][Full Text] [Related]
2. Global transcriptional profiling of Candida albicans cwt1 null mutant. Moreno I; Castillo L; Sentandreu R; Valentin E Yeast; 2007 Apr; 24(4):357-70. PubMed ID: 17238235 [TBL] [Abstract][Full Text] [Related]
3. Cell cycle arrest during S or M phase generates polarized growth via distinct signals in Candida albicans. Bachewich C; Nantel A; Whiteway M Mol Microbiol; 2005 Aug; 57(4):942-59. PubMed ID: 16091036 [TBL] [Abstract][Full Text] [Related]
4. Deletion of the high-affinity cAMP phosphodiesterase encoded by PDE2 affects stress responses and virulence in Candida albicans. Wilson D; Tutulan-Cunita A; Jung W; Hauser NC; Hernandez R; Williamson T; Piekarska K; Rupp S; Young T; Stateva L Mol Microbiol; 2007 Aug; 65(4):841-56. PubMed ID: 17614954 [TBL] [Abstract][Full Text] [Related]
5. Dosage-dependent roles of the Cwt1 transcription factor for cell wall architecture, morphogenesis, drug sensitivity and virulence in Candida albicans. Moreno I; Martinez-Esparza M; Laforet LC; Sentandreu R; Ernst JF; Valentin E Yeast; 2010 Feb; 27(2):77-87. PubMed ID: 19908200 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans. Lee RE; Liu TT; Barker KS; Lee RE; Rogers PD J Antimicrob Chemother; 2005 May; 55(5):655-62. PubMed ID: 15814599 [TBL] [Abstract][Full Text] [Related]
7. Tetracycline-inducible gene expression and gene deletion in Candida albicans. Park YN; Morschhäuser J Eukaryot Cell; 2005 Aug; 4(8):1328-42. PubMed ID: 16087738 [TBL] [Abstract][Full Text] [Related]
8. Regulatory networks affected by iron availability in Candida albicans. Lan CY; Rodarte G; Murillo LA; Jones T; Davis RW; Dungan J; Newport G; Agabian N Mol Microbiol; 2004 Sep; 53(5):1451-69. PubMed ID: 15387822 [TBL] [Abstract][Full Text] [Related]
9. DNA array analysis of Candida albicans gene expression in response to adherence to polystyrene. Marchais V; Kempf M; Licznar P; Lefrançois C; Bouchara JP; Robert R; Cottin J FEMS Microbiol Lett; 2005 Apr; 245(1):25-32. PubMed ID: 15796975 [TBL] [Abstract][Full Text] [Related]
10. A family of oligopeptide transporters is required for growth of Candida albicans on proteins. Reuss O; Morschhäuser J Mol Microbiol; 2006 May; 60(3):795-812. PubMed ID: 16629678 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431 [TBL] [Abstract][Full Text] [Related]
12. Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. Thewes S; Moran GP; Magee BB; Schaller M; Sullivan DJ; Hube B BMC Microbiol; 2008 Oct; 8():187. PubMed ID: 18950481 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of Candida albicans growth by brominated furanones. Duo M; Zhang M; Luk YY; Ren D Appl Microbiol Biotechnol; 2010 Feb; 85(5):1551-63. PubMed ID: 19756586 [TBL] [Abstract][Full Text] [Related]
14. Genomic response programs of Candida albicans following protoplasting and regeneration. Castillo L; Martínez AI; Garcerá A; García-Martínez J; Ruiz-Herrera J; Valentín E; Sentandreu R Fungal Genet Biol; 2006 Feb; 43(2):124-34. PubMed ID: 16455273 [TBL] [Abstract][Full Text] [Related]
15. Candida albicans MTLalpha tup1Delta mutants can reversibly switch to mating-competent, filamentous growth forms. Park YN; Morschhäuser J Mol Microbiol; 2005 Dec; 58(5):1288-302. PubMed ID: 16313617 [TBL] [Abstract][Full Text] [Related]
16. Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. Sigle HC; Thewes S; Niewerth M; Korting HC; Schäfer-Korting M; Hube B J Antimicrob Chemother; 2005 May; 55(5):663-73. PubMed ID: 15790671 [TBL] [Abstract][Full Text] [Related]
17. Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue. Uppuluri P; Mekala S; Chaffin WL Yeast; 2007 Aug; 24(8):681-93. PubMed ID: 17583896 [TBL] [Abstract][Full Text] [Related]
18. RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Lotz H; Sohn K; Brunner H; Muhlschlegel FA; Rupp S Eukaryot Cell; 2004 Jun; 3(3):776-84. PubMed ID: 15189998 [TBL] [Abstract][Full Text] [Related]
19. Transcription patterns of PMA1 and PMA2 genes and activity of plasma membrane H+-ATPase in Saccharomyces cerevisiae during diauxic growth and stationary phase. Fernandes AR; Sá-Correia I Yeast; 2003 Feb; 20(3):207-19. PubMed ID: 12557274 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide expression profiling of the response to terbinafine in Candida albicans using a cDNA microarray analysis. Zeng YB; Qian YS; Ma L; Gu HN Chin Med J (Engl); 2007 May; 120(9):807-13. PubMed ID: 17531123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]