These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 17555439)
21. Analysis of RNA species of various sizes from stationary-phase planktonic yeast cells of Candida albicans. Uppuluri P; Perumal P; Chaffin WL FEMS Yeast Res; 2007 Jan; 7(1):110-7. PubMed ID: 17311589 [TBL] [Abstract][Full Text] [Related]
22. Homology, disruption and phenotypic analysis of CaGS Candida albicans gene induced during macrophage infection. Luongo M; Porta A; Maresca B FEMS Immunol Med Microbiol; 2005 Sep; 45(3):471-8. PubMed ID: 16084700 [TBL] [Abstract][Full Text] [Related]
23. Analysis of phase-specific gene expression at the single-cell level in the white-opaque switching system of Candida albicans. Strauss A; Michel S; Morschhäuser J J Bacteriol; 2001 Jun; 183(12):3761-9. PubMed ID: 11371541 [TBL] [Abstract][Full Text] [Related]
24. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003 [TBL] [Abstract][Full Text] [Related]
25. Ras1 and Ras2 play antagonistic roles in regulating cellular cAMP level, stationary-phase entry and stress response in Candida albicans. Zhu Y; Fang HM; Wang YM; Zeng GS; Zheng XD; Wang Y Mol Microbiol; 2009 Nov; 74(4):862-75. PubMed ID: 19788542 [TBL] [Abstract][Full Text] [Related]
26. Rep1p negatively regulating MDR1 efflux pump involved in drug resistance in Candida albicans. Chen CG; Yang YL; Tseng KY; Shih HI; Liou CH; Lin CC; Lo HJ Fungal Genet Biol; 2009 Sep; 46(9):714-20. PubMed ID: 19527793 [TBL] [Abstract][Full Text] [Related]
27. Candida albicans HSP12 is co-regulated by physiological CO2 and pH. Sheth CC; Mogensen EG; Fu MS; Blomfield IC; Mühlschlegel FA Fungal Genet Biol; 2008 Jul; 45(7):1075-80. PubMed ID: 18487064 [TBL] [Abstract][Full Text] [Related]
28. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Zakikhany K; Naglik JR; Schmidt-Westhausen A; Holland G; Schaller M; Hube B Cell Microbiol; 2007 Dec; 9(12):2938-54. PubMed ID: 17645752 [TBL] [Abstract][Full Text] [Related]
29. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Bensen ES; Martin SJ; Li M; Berman J; Davis DA Mol Microbiol; 2004 Dec; 54(5):1335-51. PubMed ID: 15554973 [TBL] [Abstract][Full Text] [Related]
30. MET15 as a visual selection marker for Candida albicans. Viaene J; Tiels P; Logghe M; Dewaele S; Martinet W; Contreras R Yeast; 2000 Sep; 16(13):1205-15. PubMed ID: 10992284 [TBL] [Abstract][Full Text] [Related]
31. Anchorage of Candida albicans Ssr1 to the cell wall, and transcript profiling of the null mutant. Garcerá A; Castillo L; Martínez AI; Elorza MV; Valentín E; Sentandreu R Res Microbiol; 2005 Nov; 156(9):911-20. PubMed ID: 16024227 [TBL] [Abstract][Full Text] [Related]
32. Repression of CDC28 reduces the expression of the morphology-related transcription factors, Efg1p, Nrg1p, Rbf1p, Rim101p, Fkh2p and Tec1p and induces cell elongation in Candida albicans. Umeyama T; Kaneko A; Niimi M; Uehara Y Yeast; 2006 May; 23(7):537-52. PubMed ID: 16710830 [TBL] [Abstract][Full Text] [Related]
33. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Fradin C; De Groot P; MacCallum D; Schaller M; Klis F; Odds FC; Hube B Mol Microbiol; 2005 Apr; 56(2):397-415. PubMed ID: 15813733 [TBL] [Abstract][Full Text] [Related]
34. Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Andaluz E; Ciudad T; Gómez-Raja J; Calderone R; Larriba G Mol Microbiol; 2006 Mar; 59(5):1452-72. PubMed ID: 16468988 [TBL] [Abstract][Full Text] [Related]
35. The expression of genes involved in the ergosterol biosynthesis pathway in Candida albicans and Candida dubliniensis biofilms exposed to fluconazole. Borecká-Melkusová S; Moran GP; Sullivan DJ; Kucharíková S; Chorvát D; Bujdáková H Mycoses; 2009 Mar; 52(2):118-28. PubMed ID: 18627475 [TBL] [Abstract][Full Text] [Related]
36. Roles of Zinc-responsive transcription factor Csr1 in filamentous growth of the pathogenic Yeast Candida albicans. Kim MJ; Kil M; Jung JH; Kim J J Microbiol Biotechnol; 2008 Feb; 18(2):242-7. PubMed ID: 18309267 [TBL] [Abstract][Full Text] [Related]
37. An in vitro assay to study the transcriptional response during adherence of Candida albicans to different human epithelia. Sohn K; Senyürek I; Fertey J; Königsdorfer A; Joffroy C; Hauser N; Zelt G; Brunner H; Rupp S FEMS Yeast Res; 2006 Nov; 6(7):1085-93. PubMed ID: 17042758 [TBL] [Abstract][Full Text] [Related]
38. A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site. Andes D; Lepak A; Pitula A; Marchillo K; Clark J J Infect Dis; 2005 Sep; 192(5):893-900. PubMed ID: 16088840 [TBL] [Abstract][Full Text] [Related]
39. New tools for phenotypic analysis in Candida albicans: the WAR1 gene confers resistance to sorbate. Lebel K; MacPherson S; Turcotte B Yeast; 2006 Mar; 23(4):249-59. PubMed ID: 16544288 [TBL] [Abstract][Full Text] [Related]
40. Expression of TPK1 and TPK2 genes encoding PKA catalytic subunits during growth and morphogenesis in Candida albicans. Souto G; Giacometti R; Silberstein S; Giasson L; Cantore ML; Passeron S Yeast; 2006 Jun; 23(8):591-603. PubMed ID: 16823887 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]