BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 17555768)

  • 1. Stochastic Gompertz model of tumour cell growth.
    Lo CF
    J Theor Biol; 2007 Sep; 248(2):317-21. PubMed ID: 17555768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exclusion processes on a growing domain.
    Binder BJ; Landman KA
    J Theor Biol; 2009 Aug; 259(3):541-51. PubMed ID: 19427868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling embryogenesis and cancer: an approach based on an equilibrium between the autostabilization of stochastic gene expression and the interdependence of cells for proliferation.
    Laforge B; Guez D; Martinez M; Kupiec JJ
    Prog Biophys Mol Biol; 2005 Sep; 89(1):93-120. PubMed ID: 15826673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A stochastic model in tumor growth.
    Albano G; Giorno V
    J Theor Biol; 2006 Sep; 242(2):329-36. PubMed ID: 16620871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulation of tumour cell invasion by a stochastic growth model.
    Smolle J; Stettner H
    J Theor Biol; 1993 Jan; 160(1):63-72. PubMed ID: 8474247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular invasion without cellular motility in a stochastic growth model.
    Smolle J; Hofmann-Wellenhof R; Fink-Puches R
    Anal Cell Pathol; 1996 Jan; 10(1):37-43. PubMed ID: 8789268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth.
    d'Onofrio A; Fasano A; Monechi B
    Math Biosci; 2011 Mar; 230(1):45-54. PubMed ID: 21232543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring the effect of therapy on tumors showing stochastic Gompertzian growth.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    J Theor Biol; 2011 May; 276(1):67-77. PubMed ID: 21295592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of cell growth governed by stochastic processes: application to clonal growth cancer models.
    Conolly RB; Kimbell JS
    Toxicol Appl Pharmacol; 1994 Feb; 124(2):284-95. PubMed ID: 8122275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A minimal model of tumor growth inhibition.
    Magni P; Germani M; De Nicolao G; Bianchini G; Simeoni M; Poggesi I; Rocchetti M
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2683-90. PubMed ID: 19126447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.
    Lv Q; Schneider MK; Pitchford JW
    Theor Popul Biol; 2008 Aug; 74(1):74-83. PubMed ID: 18619390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-cycle times and the tumour control probability.
    Maler A; Lutscher F
    Math Med Biol; 2010 Dec; 27(4):313-42. PubMed ID: 19966342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization.
    Waliszewski P
    Biosystems; 2005 Oct; 82(1):61-73. PubMed ID: 16024163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic von Bertalanffy models, with applications to fish recruitment.
    Lv Q; Pitchford JW
    J Theor Biol; 2007 Feb; 244(4):640-55. PubMed ID: 17055532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal observability of sustained stochastic competitive inhibition oscillations at organellar volumes.
    Davis KL; Roussel MR
    FEBS J; 2006 Jan; 273(1):84-95. PubMed ID: 16367750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of cell-cell interactions in a two-phase model for avascular tumour growth.
    Breward CJ; Byrne HM; Lewis CE
    J Math Biol; 2002 Aug; 45(2):125-52. PubMed ID: 12181602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model.
    Albano G; Giorno V; Román-Román P; Torres-Ruiz F
    Math Biosci; 2013 Sep; 245(1):12-21. PubMed ID: 23347900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferation and death in a binary environment: a stochastic model of cellular ecosystems.
    Chignola R; Pra PD; Morato LM; Siri P
    Bull Math Biol; 2006 Oct; 68(7):1661-80. PubMed ID: 16967258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual-based modeling of phytoplankton: evaluating approaches for applying the cell quota model.
    Hellweger FL; Kianirad E
    J Theor Biol; 2007 Dec; 249(3):554-65. PubMed ID: 17900626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stochastic model to analyze clonal data on multi-type cell populations.
    Hyrien O; Mayer-Pröschel M; Noble M; Yakovlev A
    Biometrics; 2005 Mar; 61(1):199-207. PubMed ID: 15737094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.