These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 17555768)
1. Stochastic Gompertz model of tumour cell growth. Lo CF J Theor Biol; 2007 Sep; 248(2):317-21. PubMed ID: 17555768 [TBL] [Abstract][Full Text] [Related]
2. Exclusion processes on a growing domain. Binder BJ; Landman KA J Theor Biol; 2009 Aug; 259(3):541-51. PubMed ID: 19427868 [TBL] [Abstract][Full Text] [Related]
3. Modeling embryogenesis and cancer: an approach based on an equilibrium between the autostabilization of stochastic gene expression and the interdependence of cells for proliferation. Laforge B; Guez D; Martinez M; Kupiec JJ Prog Biophys Mol Biol; 2005 Sep; 89(1):93-120. PubMed ID: 15826673 [TBL] [Abstract][Full Text] [Related]
4. A stochastic model in tumor growth. Albano G; Giorno V J Theor Biol; 2006 Sep; 242(2):329-36. PubMed ID: 16620871 [TBL] [Abstract][Full Text] [Related]
5. Computer simulation of tumour cell invasion by a stochastic growth model. Smolle J; Stettner H J Theor Biol; 1993 Jan; 160(1):63-72. PubMed ID: 8474247 [TBL] [Abstract][Full Text] [Related]
6. Cellular invasion without cellular motility in a stochastic growth model. Smolle J; Hofmann-Wellenhof R; Fink-Puches R Anal Cell Pathol; 1996 Jan; 10(1):37-43. PubMed ID: 8789268 [TBL] [Abstract][Full Text] [Related]
7. A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth. d'Onofrio A; Fasano A; Monechi B Math Biosci; 2011 Mar; 230(1):45-54. PubMed ID: 21232543 [TBL] [Abstract][Full Text] [Related]
8. Inferring the effect of therapy on tumors showing stochastic Gompertzian growth. Albano G; Giorno V; Román-Román P; Torres-Ruiz F J Theor Biol; 2011 May; 276(1):67-77. PubMed ID: 21295592 [TBL] [Abstract][Full Text] [Related]
9. Computer simulation of cell growth governed by stochastic processes: application to clonal growth cancer models. Conolly RB; Kimbell JS Toxicol Appl Pharmacol; 1994 Feb; 124(2):284-95. PubMed ID: 8122275 [TBL] [Abstract][Full Text] [Related]
10. A minimal model of tumor growth inhibition. Magni P; Germani M; De Nicolao G; Bianchini G; Simeoni M; Poggesi I; Rocchetti M IEEE Trans Biomed Eng; 2008 Dec; 55(12):2683-90. PubMed ID: 19126447 [TBL] [Abstract][Full Text] [Related]
11. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth. Lv Q; Schneider MK; Pitchford JW Theor Popul Biol; 2008 Aug; 74(1):74-83. PubMed ID: 18619390 [TBL] [Abstract][Full Text] [Related]
12. Cell-cycle times and the tumour control probability. Maler A; Lutscher F Math Med Biol; 2010 Dec; 27(4):313-42. PubMed ID: 19966342 [TBL] [Abstract][Full Text] [Related]
13. A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization. Waliszewski P Biosystems; 2005 Oct; 82(1):61-73. PubMed ID: 16024163 [TBL] [Abstract][Full Text] [Related]
14. Stochastic von Bertalanffy models, with applications to fish recruitment. Lv Q; Pitchford JW J Theor Biol; 2007 Feb; 244(4):640-55. PubMed ID: 17055532 [TBL] [Abstract][Full Text] [Related]
15. Optimal observability of sustained stochastic competitive inhibition oscillations at organellar volumes. Davis KL; Roussel MR FEBS J; 2006 Jan; 273(1):84-95. PubMed ID: 16367750 [TBL] [Abstract][Full Text] [Related]
16. The role of cell-cell interactions in a two-phase model for avascular tumour growth. Breward CJ; Byrne HM; Lewis CE J Math Biol; 2002 Aug; 45(2):125-52. PubMed ID: 12181602 [TBL] [Abstract][Full Text] [Related]
17. On the effect of a therapy able to modify both the growth rates in a Gompertz stochastic model. Albano G; Giorno V; Román-Román P; Torres-Ruiz F Math Biosci; 2013 Sep; 245(1):12-21. PubMed ID: 23347900 [TBL] [Abstract][Full Text] [Related]
18. Proliferation and death in a binary environment: a stochastic model of cellular ecosystems. Chignola R; Pra PD; Morato LM; Siri P Bull Math Biol; 2006 Oct; 68(7):1661-80. PubMed ID: 16967258 [TBL] [Abstract][Full Text] [Related]
19. Individual-based modeling of phytoplankton: evaluating approaches for applying the cell quota model. Hellweger FL; Kianirad E J Theor Biol; 2007 Dec; 249(3):554-65. PubMed ID: 17900626 [TBL] [Abstract][Full Text] [Related]
20. A stochastic model to analyze clonal data on multi-type cell populations. Hyrien O; Mayer-Pröschel M; Noble M; Yakovlev A Biometrics; 2005 Mar; 61(1):199-207. PubMed ID: 15737094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]