These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 17556391)
1. Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle. Yoshida Y; Holloway GP; Ljubicic V; Hatta H; Spriet LL; Hood DA; Bonen A J Physiol; 2007 Aug; 582(Pt 3):1317-35. PubMed ID: 17556391 [TBL] [Abstract][Full Text] [Related]
2. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Brooks GA; Dubouchaud H; Brown M; Sicurello JP; Butz CE Proc Natl Acad Sci U S A; 1999 Feb; 96(3):1129-34. PubMed ID: 9927705 [TBL] [Abstract][Full Text] [Related]
3. In obese rat muscle transport of palmitate is increased and is channeled to triacylglycerol storage despite an increase in mitochondrial palmitate oxidation. Holloway GP; Benton CR; Mullen KL; Yoshida Y; Snook LA; Han XX; Glatz JF; Luiken JJ; Lally J; Dyck DJ; Bonen A Am J Physiol Endocrinol Metab; 2009 Apr; 296(4):E738-47. PubMed ID: 19141681 [TBL] [Abstract][Full Text] [Related]
4. Monocarboxylate transporters in subsarcolemmal and intermyofibrillar mitochondria. Benton CR; Campbell SE; Tonouchi M; Hatta H; Bonen A Biochem Biophys Res Commun; 2004 Oct; 323(1):249-53. PubMed ID: 15351729 [TBL] [Abstract][Full Text] [Related]
5. Resveratrol attenuates high-fat diet-induced insulin resistance by influencing skeletal muscle lipid transport and subsarcolemmal mitochondrial β-oxidation. Chen LL; Zhang HH; Zheng J; Hu X; Kong W; Hu D; Wang SX; Zhang P Metabolism; 2011 Nov; 60(11):1598-609. PubMed ID: 21632075 [TBL] [Abstract][Full Text] [Related]
6. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle. Bezaire V; Heigenhauser GJ; Spriet LL Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E85-91. PubMed ID: 12954596 [TBL] [Abstract][Full Text] [Related]
7. Physical and functional association of lactate dehydrogenase (LDH) with skeletal muscle mitochondria. Elustondo PA; White AE; Hughes ME; Brebner K; Pavlov E; Kane DA J Biol Chem; 2013 Aug; 288(35):25309-25317. PubMed ID: 23873936 [TBL] [Abstract][Full Text] [Related]
8. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Gurd BJ; Holloway GP; Yoshida Y; Bonen A Metabolism; 2012 May; 61(5):733-41. PubMed ID: 22078938 [TBL] [Abstract][Full Text] [Related]
9. Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria. Differential import regulation in distinct subcellular regions. Takahashi M; Hood DA J Biol Chem; 1996 Nov; 271(44):27285-91. PubMed ID: 8910303 [TBL] [Abstract][Full Text] [Related]
10. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle. Adhihetty PJ; Ljubicic V; Hood DA Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E748-55. PubMed ID: 17106065 [TBL] [Abstract][Full Text] [Related]
11. Clenbuterol, a β2-adrenergic agonist, reciprocally alters PGC-1 alpha and RIP140 and reduces fatty acid and pyruvate oxidation in rat skeletal muscle. Hoshino D; Yoshida Y; Holloway GP; Lally J; Hatta H; Bonen A Am J Physiol Regul Integr Comp Physiol; 2012 Feb; 302(3):R373-84. PubMed ID: 22071161 [TBL] [Abstract][Full Text] [Related]
12. Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Hashimoto T; Hussien R; Brooks GA Am J Physiol Endocrinol Metab; 2006 Jun; 290(6):E1237-44. PubMed ID: 16434551 [TBL] [Abstract][Full Text] [Related]
14. L-lactate oxidation by skeletal muscle mitochondria. Szczesna-Kaczmarek A Int J Biochem; 1990; 22(6):617-20. PubMed ID: 2379665 [TBL] [Abstract][Full Text] [Related]
15. Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. Brooks GA; Brown MA; Butz CE; Sicurello JP; Dubouchaud H J Appl Physiol (1985); 1999 Nov; 87(5):1713-8. PubMed ID: 10562613 [TBL] [Abstract][Full Text] [Related]
16. Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria. Bizeau ME; Willis WT; Hazel JR J Appl Physiol (1985); 1998 Oct; 85(4):1279-84. PubMed ID: 9760317 [TBL] [Abstract][Full Text] [Related]
17. SIRT1 overexpression in skeletal muscle in vivo induces increased insulin sensitivity and enhanced complex I but not complex II-V functions in individual subsarcolemmal and intermyofibrillar mitochondria. Zhang HH; Qin GJ; Li XL; Zhang YH; Du PJ; Zhang PY; Zhao YY; Wu J J Physiol Biochem; 2015 Jun; 71(2):177-90. PubMed ID: 25782776 [TBL] [Abstract][Full Text] [Related]
18. Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions. Cogswell AM; Stevens RJ; Hood DA Am J Physiol; 1993 Feb; 264(2 Pt 1):C383-9. PubMed ID: 8383431 [TBL] [Abstract][Full Text] [Related]
19. High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle. Hoshino D; Yoshida Y; Kitaoka Y; Hatta H; Bonen A Appl Physiol Nutr Metab; 2013 Mar; 38(3):326-33. PubMed ID: 23537026 [TBL] [Abstract][Full Text] [Related]
20. Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions. Connor MK; Bezborodova O; Escobar CP; Hood DA J Appl Physiol (1985); 2000 May; 88(5):1601-6. PubMed ID: 10797119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]