These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17556523)

  • 1. Genomic and genetic control of phosphate stress in legumes.
    Tesfaye M; Liu J; Allan DL; Vance CP
    Plant Physiol; 2007 Jun; 144(2):594-603. PubMed ID: 17556523
    [No Abstract]   [Full Text] [Related]  

  • 2. Legume genomes and discoveries in symbiosis research.
    Udvardi MK
    Genome Biol; 2002 Aug; 3(9):reports4028. PubMed ID: 12225579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexity of miRNA-dependent regulation in root symbiosis.
    Bazin J; Bustos-Sanmamed P; Hartmann C; Lelandais-Brière C; Crespi M
    Philos Trans R Soc Lond B Biol Sci; 2012 Jun; 367(1595):1570-9. PubMed ID: 22527400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative trait loci, epigenetics, sugars, and microRNAs: quaternaries in phosphate acquisition and use.
    Vance CP
    Plant Physiol; 2010 Oct; 154(2):582-8. PubMed ID: 20921189
    [No Abstract]   [Full Text] [Related]  

  • 5. Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): De novo assembly, functional characterization and comparative analysis in relation to drought stress.
    Bhardwaj J; Chauhan R; Swarnkar MK; Chahota RK; Singh AK; Shankar R; Yadav SK
    BMC Genomics; 2013 Sep; 14():647. PubMed ID: 24059455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Molecular genetic mechanisms used by legumes to control early stages of mutually beneficial (mutualistic) symbiosis].
    Zhukov VA; Shtark OIu; Borisov AIu; Tikhonovich IA
    Genetika; 2009 Nov; 45(11):1449-60. PubMed ID: 20058793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis.
    Geurts R; Lillo A; Bisseling T
    Curr Opin Plant Biol; 2012 Aug; 15(4):438-43. PubMed ID: 22633856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequencing and analysis of the gene-rich space of cowpea.
    Timko MP; Rushton PJ; Laudeman TW; Bokowiec MT; Chipumuro E; Cheung F; Town CD; Chen X
    BMC Genomics; 2008 Feb; 9():103. PubMed ID: 18304330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in legume-microbe interactions: recognition, defense response, and symbiosis from a genomic perspective.
    Samac DA; Graham MA
    Plant Physiol; 2007 Jun; 144(2):582-7. PubMed ID: 17556521
    [No Abstract]   [Full Text] [Related]  

  • 10. Plant science. GRAS genes and the symbiotic green revolution.
    Udvardi MK; Scheible WR
    Science; 2005 Jun; 308(5729):1749-50. PubMed ID: 15961658
    [No Abstract]   [Full Text] [Related]  

  • 11. Through the doors of perception to function in arbuscular mycorrhizal symbioses.
    Bucher M; Hause B; Krajinski F; Küster H
    New Phytol; 2014 Dec; 204(4):833-40. PubMed ID: 25414918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symbiotic phosphate transport in arbuscular mycorrhizas.
    Karandashov V; Bucher M
    Trends Plant Sci; 2005 Jan; 10(1):22-9. PubMed ID: 15642520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity.
    Cao L; Yu Y; Ding X; Zhu D; Yang F; Liu B; Sun X; Duan X; Yin K; Zhu Y
    Plant Mol Biol; 2017 Oct; 95(3):253-268. PubMed ID: 28884328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Summaries of legume genomics projects from around the globe. Community resources for crops and models.
    VandenBosch KA; Stacey G
    Plant Physiol; 2003 Mar; 131(3):840-65. PubMed ID: 12644637
    [No Abstract]   [Full Text] [Related]  

  • 15. Polyploidization events shaped the transcription factor repertoires in legumes (Fabaceae).
    Moharana KC; Venancio TM
    Plant J; 2020 Jul; 103(2):726-741. PubMed ID: 32270526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medicaol, a strigolactone identified as a putative didehydro-orobanchol isomer, from Medicago truncatula.
    Tokunaga T; Hayashi H; Akiyama K
    Phytochemistry; 2015 Mar; 111():91-7. PubMed ID: 25593009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strigolactones: Internal and external signals in plant symbioses?
    Foo E; Yoneyama K; Hugill C; Quittenden LJ; Reid JB
    Plant Signal Behav; 2013 Mar; 8(3):e23168. PubMed ID: 23299321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of early Al-responsive genes in rice bean (Vigna umbellata) roots provides new clues to molecular mechanisms of Al toxicity and tolerance.
    Fan W; Lou HQ; Gong YL; Liu MY; Wang ZQ; Yang JL; Zheng SJ
    Plant Cell Environ; 2014 Jul; 37(7):1586-97. PubMed ID: 24372448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi.
    Harrison MJ; Dewbre GR; Liu J
    Plant Cell; 2002 Oct; 14(10):2413-29. PubMed ID: 12368495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant hormonal regulation of nitrogen-fixing nodule organogenesis.
    Ryu H; Cho H; Choi D; Hwang I
    Mol Cells; 2012 Aug; 34(2):117-26. PubMed ID: 22820920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.