BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 17557078)

  • 1. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1.
    Schwertassek U; Balmer Y; Gutscher M; Weingarten L; Preuss M; Engelhard J; Winkler M; Dick TP
    EMBO J; 2007 Jul; 26(13):3086-97. PubMed ID: 17557078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides.
    Curbo S; Gaudin R; Carlsten M; Malmberg KJ; Troye-Blomberg M; Ahlborg N; Karlsson A; Johansson M; Lundberg M
    Biochem Biophys Res Commun; 2009 Dec; 390(4):1272-7. PubMed ID: 19878651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of redox-active cell-surface proteins by mechanism-based kinetic trapping.
    Schwertassek U; Weingarten L; Dick TP
    Sci STKE; 2007 Dec; 2007(417):pl8. PubMed ID: 18089859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of thioredoxin.
    Jurado P; de Lorenzo V; Fernández LA
    J Mol Biol; 2006 Mar; 357(1):49-61. PubMed ID: 16427080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extracellular microenvironment plays a key role in regulating the redox status of cell surface proteins in HIV-infected subjects.
    Sahaf B; Heydari K; Herzenberg LA; Herzenberg LA
    Arch Biochem Biophys; 2005 Feb; 434(1):26-32. PubMed ID: 15629105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protein disulfide isomerase/thioredoxin-1 complex is physically attached to exofacial membrane tumor necrosis factor receptors: overexpression in chronic lymphocytic leukemia cells.
    Söderberg A; Hossain A; Rosén A
    Antioxid Redox Signal; 2013 Feb; 18(4):363-75. PubMed ID: 22775451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox status of thioredoxin-1 (TRX1) determines the sensitivity of human liver carcinoma cells (HepG2) to arsenic trioxide-induced cell death.
    Tian C; Gao P; Zheng Y; Yue W; Wang X; Jin H; Chen Q
    Cell Res; 2008 Apr; 18(4):458-71. PubMed ID: 18157160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidation and nuclear localization of thioredoxin-1 in sparse cell cultures.
    Spielberger JC; Moody AD; Watson WH
    J Cell Biochem; 2008 Aug; 104(5):1879-89. PubMed ID: 18384140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting thioredoxins for disulphide proteomics: target proteomes of three thioredoxins from the cyanobacterium Synechocystis sp. PCC 6803.
    Pérez-Pérez ME; Florencio FJ; Lindahl M
    Proteomics; 2006 Apr; 6 Suppl 1():S186-95. PubMed ID: 16526092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway.
    Mason JT; Kim SK; Knaff DB; Wood MJ
    Biochemistry; 2006 Nov; 45(45):13409-17. PubMed ID: 17087494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The zinc center influences the redox and thermodynamic properties of Escherichia coli thioredoxin 2.
    El Hajjaji H; Dumoulin M; Matagne A; Colau D; Roos G; Messens J; Collet JF
    J Mol Biol; 2009 Feb; 386(1):60-71. PubMed ID: 19073194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines.
    Chen CY; Willard D; Rudolph J
    Biochemistry; 2009 Feb; 48(6):1399-409. PubMed ID: 19166311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ kinetic trapping reveals a fingerprint of reversible protein thiol oxidation in the mitochondrial matrix.
    Engelhard J; Christian BE; Weingarten L; Kuntz G; Spremulli LL; Dick TP
    Free Radic Biol Med; 2011 May; 50(10):1234-41. PubMed ID: 21295137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel thioredoxin targets in Dictyostelium discoideum identified by two-hybrid analysis: interactions of thioredoxin with elongation factor 1alpha and yeast alcohol dehydrogenase.
    Brodegger T; Stockmann A; Oberstrass J; Nellen W; Follmann H
    Biol Chem; 2004 Dec; 385(12):1185-92. PubMed ID: 15653432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel mouse model for the identification of thioredoxin-1 protein interactions.
    Booze ML; Hansen JM; Vitiello PF
    Free Radic Biol Med; 2016 Oct; 99():533-543. PubMed ID: 27639450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for proton shuffling in a thioredoxin-like protein during catalysis.
    Narzi D; Siu SW; Stirnimann CU; Grimshaw JP; Glockshuber R; Capitani G; Böckmann RA
    J Mol Biol; 2008 Oct; 382(4):978-86. PubMed ID: 18692066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Truncated and full-length thioredoxin-1 have opposing activating and inhibitory properties for human complement with relevance to endothelial surfaces.
    King BC; Nowakowska J; Karsten CM; Köhl J; Renström E; Blom AM
    J Immunol; 2012 Apr; 188(8):4103-12. PubMed ID: 22430737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thioredoxin (Trx1) regulates CD4 membrane domain localization and is required for efficient CD4-dependent HIV-1 entry.
    Moolla N; Killick M; Papathanasopoulos M; Capovilla A
    Biochim Biophys Acta; 2016 Sep; 1860(9):1854-63. PubMed ID: 27233453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of mercury(II) on Nrf2, thioredoxin reductase-1 and thioredoxin-1 in human monocytes.
    Wataha JC; Lewis JB; McCloud VV; Shaw M; Omata Y; Lockwood PE; Messer RL; Hansen JM
    Dent Mater; 2008 Jun; 24(6):765-72. PubMed ID: 17959236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1.
    Matthias LJ; Yam PT; Jiang XM; Vandegraaff N; Li P; Poumbourios P; Donoghue N; Hogg PJ
    Nat Immunol; 2002 Aug; 3(8):727-32. PubMed ID: 12089508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.