BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17557324)

  • 1. Are disc pressure, stress, and osmolarity affected by intra- and extrafibrillar fluid exchange?
    Schroeder Y; Sivan S; Wilson W; Merkher Y; Huyghe JM; Maroudas A; Baaijens FP
    J Orthop Res; 2007 Oct; 25(10):1317-24. PubMed ID: 17557324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ionised/non-ionised dual porosity model of intervertebral disc tissue.
    Huyghe JM; Houben GB; Drost MR; van Donkelaar CC
    Biomech Model Mechanobiol; 2003 Aug; 2(1):3-19. PubMed ID: 14586814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of extracellular osmolarity and mechanical stimulation on gene expression of intervertebral disc cells.
    Wuertz K; Urban JP; Klasen J; Ignatius A; Wilke HJ; Claes L; Neidlinger-Wilke C
    J Orthop Res; 2007 Nov; 25(11):1513-22. PubMed ID: 17568421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of swelling pressure and intrafibrillar water in young and aged human intervertebral discs.
    Sivan S; Merkher Y; Wachtel E; Ehrlich S; Maroudas A
    J Orthop Res; 2006 Jun; 24(6):1292-8. PubMed ID: 16649177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite-element simulation of changes in the fluid content of human lumbar discs. Mechanical and clinical implications.
    Shirazi-Adl A
    Spine (Phila Pa 1976); 1992 Feb; 17(2):206-12. PubMed ID: 1553592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distribution of water in arterial elastin: effects of mechanical stress, osmotic pressure, and temperature.
    Weinberg PD; Winlove CP; Parker KH
    Biopolymers; 1995 Feb; 35(2):161-9. PubMed ID: 7696562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remedy for fictive negative pressures in biphasic finite element models of the intervertebral disc during unloading.
    Schmidt H; Galbusera F; Wilke HJ; Shirazi-Adl A
    Comput Methods Biomech Biomed Engin; 2011 Mar; 14(3):293-303. PubMed ID: 21347916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells.
    Kasra M; Goel V; Martin J; Wang ST; Choi W; Buckwalter J
    J Orthop Res; 2003 Jul; 21(4):597-603. PubMed ID: 12798057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of aging and degeneration on the human intervertebral disc during the diurnal cycle: a finite element study.
    Massey CJ; van Donkelaar CC; Vresilovic E; Zavaliangos A; Marcolongo M
    J Orthop Res; 2012 Jan; 30(1):122-8. PubMed ID: 21710607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of osmotic pressure changes on the opening of existing cracks in 2 intervertebral disc models.
    Wognum S; Huyghe JM; Baaijens FP
    Spine (Phila Pa 1976); 2006 Jul; 31(16):1783-8. PubMed ID: 16845351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creep associated changes in intervertebral disc bulging obtained with a laser scanning device.
    Heuer F; Schmitt H; Schmidt H; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):737-44. PubMed ID: 17561321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis.
    Schmidt H; Kettler A; Rohlmann A; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 Nov; 22(9):988-98. PubMed ID: 17822814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and model determination of human intervertebral disc osmoviscoelasticity.
    Schroeder Y; Elliott DM; Wilson W; Baaijens FP; Huyghe JM
    J Orthop Res; 2008 Aug; 26(8):1141-6. PubMed ID: 18327799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical stimulation alters pleiotrophin and aggrecan expression by human intervertebral disc cells and influences their capacity to stimulate endothelial migration.
    Neidlinger-Wilke C; Liedert A; Wuertz K; Buser Z; Rinkler C; Käfer W; Ignatius A; Claes L; Roberts S; Johnson WE
    Spine (Phila Pa 1976); 2009 Apr; 34(7):663-9. PubMed ID: 19333097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis.
    Guan Y; Yoganandan N; Maiman DJ; Pintar FA
    J Spinal Disord Tech; 2008 Jun; 21(4):299-304. PubMed ID: 18525492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core.
    Moumene M; Geisler FH
    Spine (Phila Pa 1976); 2007 Aug; 32(17):1840-51. PubMed ID: 17762291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extended biphasic model for charged hydrated tissues with application to the intervertebral disc.
    Ehlers W; Karajan N; Markert B
    Biomech Model Mechanobiol; 2009 Jun; 8(3):233-51. PubMed ID: 18661285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.