These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 1755827)
1. New enzymes for old: redesigning the coenzyme and substrate specificities of glutathione reductase. Perham RN; Scrutton NS; Berry A Bioessays; 1991 Oct; 13(10):515-25. PubMed ID: 1755827 [TBL] [Abstract][Full Text] [Related]
2. Redesign of the coenzyme specificity of a dehydrogenase by protein engineering. Scrutton NS; Berry A; Perham RN Nature; 1990 Jan; 343(6253):38-43. PubMed ID: 2296288 [TBL] [Abstract][Full Text] [Related]
3. Structural differences between wild-type NADP-dependent glutathione reductase from Escherichia coli and a redesigned NAD-dependent mutant. Mittl PR; Berry A; Scrutton NS; Perham RN; Schulz GE J Mol Biol; 1993 May; 231(2):191-5. PubMed ID: 8510142 [TBL] [Abstract][Full Text] [Related]
4. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site. Danielson UH; Jiang F; Hansson LO; Mannervik B Biochemistry; 1999 Jul; 38(29):9254-63. PubMed ID: 10413499 [TBL] [Abstract][Full Text] [Related]
5. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity. Stoll VS; Simpson SJ; Krauth-Siegel RL; Walsh CT; Pai EF Biochemistry; 1997 May; 36(21):6437-47. PubMed ID: 9174360 [TBL] [Abstract][Full Text] [Related]
6. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities. Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis. Waksman G; Krishna TS; Williams CH; Kuriyan J J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095 [TBL] [Abstract][Full Text] [Related]
8. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii. Friesen JA; Lawrence CM; Stauffacher CV; Rodwell VW Biochemistry; 1996 Sep; 35(37):11945-50. PubMed ID: 8810898 [TBL] [Abstract][Full Text] [Related]
9. Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Henderson GB; Murgolo NJ; Kuriyan J; Osapay K; Kominos D; Berry A; Scrutton NS; Hinchliffe NW; Perham RN; Cerami A Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8769-73. PubMed ID: 1924337 [TBL] [Abstract][Full Text] [Related]
10. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase. Cho H; Hamza A; Zhan CG; Tai HH Arch Biochem Biophys; 2005 Jan; 433(2):447-53. PubMed ID: 15581601 [TBL] [Abstract][Full Text] [Related]
11. Engineering of pyridine nucleotide specificity of nitrate reductase: mutagenesis of recombinant cytochrome b reductase fragment of Neurospora crassa NADPH:Nitrate reductase. Shiraishi N; Croy C; Kaur J; Campbell WH Arch Biochem Biophys; 1998 Oct; 358(1):104-15. PubMed ID: 9750171 [TBL] [Abstract][Full Text] [Related]
12. The three-dimensional structure of glutathione reductase from Escherichia coli at 3.0 A resolution. Ermler U; Schulz GE Proteins; 1991; 9(3):174-9. PubMed ID: 2006135 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli. Tanaka N; Nonaka T; Tanabe T; Yoshimoto T; Tsuru D; Mitsui Y Biochemistry; 1996 Jun; 35(24):7715-30. PubMed ID: 8672472 [TBL] [Abstract][Full Text] [Related]
14. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related]
15. Convergent evolution of similar function in two structurally divergent enzymes. Kuriyan J; Krishna TS; Wong L; Guenther B; Pahler A; Williams CH; Model P Nature; 1991 Jul; 352(6331):172-4. PubMed ID: 2067578 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase. Quinn GB; Trimboli AJ; Prosser IM; Barber MJ Arch Biochem Biophys; 1996 Mar; 327(1):151-60. PubMed ID: 8615685 [TBL] [Abstract][Full Text] [Related]
17. Truncated mutants of human thioredoxin reductase 1 do not exhibit glutathione reductase activity. Urig S; Lieske J; Fritz-Wolf K; Irmler A; Becker K FEBS Lett; 2006 Jun; 580(15):3595-600. PubMed ID: 16750198 [TBL] [Abstract][Full Text] [Related]
18. Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase. Bradley M; Bücheler US; Walsh CT Biochemistry; 1991 Jun; 30(25):6124-7. PubMed ID: 2059620 [TBL] [Abstract][Full Text] [Related]
19. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants. Rosano C; Bisso A; Izzo G; Tonetti M; Sturla L; De Flora A; Bolognesi M J Mol Biol; 2000 Oct; 303(1):77-91. PubMed ID: 11021971 [TBL] [Abstract][Full Text] [Related]
20. The structure of Trypanosoma cruzi trypanothione reductase in the oxidized and NADPH reduced state. Lantwin CB; Schlichting I; Kabsch W; Pai EF; Krauth-Siegel RL Proteins; 1994 Feb; 18(2):161-73. PubMed ID: 8159665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]