These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1196 related articles for article (PubMed ID: 17558387)

  • 1. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing.
    Robertson G; Hirst M; Bainbridge M; Bilenky M; Zhao Y; Zeng T; Euskirchen G; Bernier B; Varhol R; Delaney A; Thiessen N; Griffith OL; He A; Marra M; Snyder M; Jones S
    Nat Methods; 2007 Aug; 4(8):651-7. PubMed ID: 17558387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MER41 repeat sequences contain inducible STAT1 binding sites.
    Schmid CD; Bucher P
    PLoS One; 2010 Jul; 5(7):e11425. PubMed ID: 20625510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data.
    Jothi R; Cuddapah S; Barski A; Cui K; Zhao K
    Nucleic Acids Res; 2008 Sep; 36(16):5221-31. PubMed ID: 18684996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data.
    Chung D; Kuan PF; Li B; Sanalkumar R; Liang K; Bresnick EH; Dewey C; Keleş S
    PLoS Comput Biol; 2011 Jul; 7(7):e1002111. PubMed ID: 21779159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal transducers and activators of transcription-1 (STAT1) regulates microRNA transcription in interferon gamma-stimulated HeLa cells.
    Wang G; Wang Y; Teng M; Zhang D; Li L; Liu Y
    PLoS One; 2010 Jul; 5(7):e11794. PubMed ID: 20668688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the chromosomal targets of STAT1 by Sequence Tag Analysis of Genomic Enrichment (STAGE).
    Bhinge AA; Kim J; Euskirchen GM; Snyder M; Iyer VR
    Genome Res; 2007 Jun; 17(6):910-6. PubMed ID: 17568006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide relationship between histone H3 lysine 4 mono- and tri-methylation and transcription factor binding.
    Robertson AG; Bilenky M; Tam A; Zhao Y; Zeng T; Thiessen N; Cezard T; Fejes AP; Wederell ED; Cullum R; Euskirchen G; Krzywinski M; Birol I; Snyder M; Hoodless PA; Hirst M; Marra MA; Jones SJ
    Genome Res; 2008 Dec; 18(12):1906-17. PubMed ID: 18787082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pinpointing transcription factor binding sites from ChIP-seq data with SeqSite.
    Wang X; Zhang X
    BMC Syst Biol; 2011; 5 Suppl 2(Suppl 2):S3. PubMed ID: 22784574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global changes in STAT target selection and transcription regulation upon interferon treatments.
    Hartman SE; Bertone P; Nath AK; Royce TE; Gerstein M; Weissman S; Snyder M
    Genes Dev; 2005 Dec; 19(24):2953-68. PubMed ID: 16319195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A short survey of computational analysis methods in analysing ChIP-seq data.
    Kim H; Kim J; Selby H; Gao D; Tong T; Phang TL; Tan AC
    Hum Genomics; 2011 Jan; 5(2):117-23. PubMed ID: 21296745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HPeak: an HMM-based algorithm for defining read-enriched regions in ChIP-Seq data.
    Qin ZS; Yu J; Shen J; Maher CA; Hu M; Kalyana-Sundaram S; Yu J; Chinnaiyan AM
    BMC Bioinformatics; 2010 Jul; 11():369. PubMed ID: 20598134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Important biological information uncovered in previously unaligned reads from chromatin immunoprecipitation experiments (ChIP-Seq).
    Ouma WZ; Mejia-Guerra MK; Yilmaz A; Pareja-Tobes P; Li W; Doseff AI; Grotewold E
    Sci Rep; 2015 Mar; 5():8635. PubMed ID: 25727450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of transcription factor binding regions in mammalian cells by ChIP: comparison of array- and sequencing-based technologies.
    Euskirchen GM; Rozowsky JS; Wei CL; Lee WH; Zhang ZD; Hartman S; Emanuelsson O; Stolc V; Weissman S; Gerstein MB; Ruan Y; Snyder M
    Genome Res; 2007 Jun; 17(6):898-909. PubMed ID: 17568005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximal genomic localization of STAT1 binding and regulated transcriptional activity.
    Wormald S; Hilton DJ; Smyth GK; Speed TP
    BMC Genomics; 2006 Oct; 7():254. PubMed ID: 17032459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peak Scores Significantly Depend on the Relationships between Contextual Signals in ChIP-Seq Peaks.
    Vishnevsky OV; Bocharnikov AV; Ignatieva EV
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated pipeline for the genome-wide analysis of transcription factor binding sites from ChIP-Seq.
    Mercier E; Droit A; Li L; Robertson G; Zhang X; Gottardo R
    PLoS One; 2011 Feb; 6(2):e16432. PubMed ID: 21358819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational analysis of ChIP-seq data.
    Ji H
    Methods Mol Biol; 2010; 674():143-59. PubMed ID: 20827590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ChIP-seq.
    Kim TH; Dekker J
    Cold Spring Harb Protoc; 2018 May; 2018(5):. PubMed ID: 29717046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 60.