These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17558531)

  • 1. Multiple conductance substates in pharmacologically untreated Na(+) channels generating persistent openings in rat entorhinal cortex neurons.
    Magistretti J; Alonso A
    J Membr Biol; 2006; 214(3):165-80. PubMed ID: 17558531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High conductance sustained single-channel activity responsible for the low-threshold persistent Na(+) current in entorhinal cortex neurons.
    Magistretti J; Ragsdale DS; Alonso A
    J Neurosci; 1999 Sep; 19(17):7334-41. PubMed ID: 10460240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine gating properties of channels responsible for persistent sodium current generation in entorhinal cortex neurons.
    Magistretti J; Alonso A
    J Gen Physiol; 2002 Dec; 120(6):855-73. PubMed ID: 12451054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic diversity of single-channel burst openings underlying persistent Na(+) current in entorhinal cortex neurons.
    Magistretti J; Ragsdale DS; Alonso A
    Biophys J; 2003 Nov; 85(5):3019-34. PubMed ID: 14581203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study.
    Magistretti J; Alonso A
    J Gen Physiol; 1999 Oct; 114(4):491-509. PubMed ID: 10498669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct demonstration of persistent Na+ channel activity in dendritic processes of mammalian cortical neurones.
    Magistretti J; Ragsdale DS; Alonso A
    J Physiol; 1999 Dec; 521 Pt 3(Pt 3):629-36. PubMed ID: 10601494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex.
    Alzheimer C; Schwindt PC; Crill WE
    J Neurosci; 1993 Feb; 13(2):660-73. PubMed ID: 8381170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium channel subconductance levels measured with a new variance-mean analysis.
    Patlak JB
    J Gen Physiol; 1988 Oct; 92(4):413-30. PubMed ID: 2849627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons.
    Agrawal N; Hamam BN; Magistretti J; Alonso A; Ragsdale DS
    Neuroscience; 2001; 102(1):53-64. PubMed ID: 11226669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex.
    White JA; Klink R; Alonso A; Kay AR
    J Neurophysiol; 1998 Jul; 80(1):262-9. PubMed ID: 9658048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subconductance gating and voltage sensitivity of sarcoplasmic reticulum K(+) channels: a modeling approach.
    Matyjaszkiewicz A; Venturi E; O'Brien F; Iida T; Nishi M; Takeshima H; Tsaneva-Atanasova K; Sitsapesan R
    Biophys J; 2015 Jul; 109(2):265-76. PubMed ID: 26200862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic properties of alpha 1 beta 1 gamma-aminobutyric acidA receptor channels expressed in Chinese hamster ovary cells: regulation by pentobarbital and picrotoxin.
    Porter NM; Angelotti TP; Twyman RE; MacDonald RL
    Mol Pharmacol; 1992 Nov; 42(5):872-81. PubMed ID: 1331767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of single fast chloride channels from rat cerebral cortex neurons.
    Blatz AL
    J Physiol; 1991 Sep; 441():1-21. PubMed ID: 1726175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-attached single-channel recordings in intact prefrontal cortex pyramidal neurons reveal compartmentalized D1/D5 receptor modulation of the persistent sodium current.
    Gorelova N; Seamans JK
    Front Neural Circuits; 2015; 9():4. PubMed ID: 25729354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The occurrence of stable subconductance levels in Na(+)-activated K+ channels in excised membrane patches from guinea-pig ventricular myocytes.
    Mistry DK; Tripathi O; Chapman RA
    Exp Physiol; 1996 Nov; 81(6):899-907. PubMed ID: 8960697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of Na+ channels and Cl- conductance in resealed muscle fibre segments from patients with myotonic dystrophy.
    Franke C; Hatt H; Iaizzo PA; Lehmann-Horn F
    J Physiol; 1990 Jun; 425():391-405. PubMed ID: 1698978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine residues in the nucleotide binding domains regulate the conductance state of CFTR channels.
    Harrington MA; Kopito RR
    Biophys J; 2002 Mar; 82(3):1278-92. PubMed ID: 11867445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-channel currents of a peptide-gated sodium channel expressed in Xenopus oocytes.
    Zhainazarov AB; Cottrell GA
    J Physiol; 1998 Nov; 513 ( Pt 1)(Pt 1):19-31. PubMed ID: 9782156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subconductance states in cardiac sodium channels.
    Nilius B; Vereecke J; Carmeliet E
    Biomed Biochim Acta; 1989; 48(5-6):S354-7. PubMed ID: 2547361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening and closing transitions for BK channels often occur in two steps via sojourns through a brief lifetime subconductance state.
    Ferguson WB; McManus OB; Magleby KL
    Biophys J; 1993 Aug; 65(2):702-14. PubMed ID: 8218898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.