These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 17558645)
21. Micromechanics fracture in osteonal cortical bone: a study of the interactions between microcrack propagation, microstructure and the material properties. Najafi AR; Arshi AR; Eslami MR; Fariborz S; Moeinzadeh MH J Biomech; 2007; 40(12):2788-95. PubMed ID: 17376454 [TBL] [Abstract][Full Text] [Related]
22. Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. Baca V; Horak Z; Mikulenka P; Dzupa V Med Eng Phys; 2008 Sep; 30(7):924-30. PubMed ID: 18243761 [TBL] [Abstract][Full Text] [Related]
23. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue. Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057 [TBL] [Abstract][Full Text] [Related]
24. Effect of microstructure on the mechanical properties of Haversian cortical bone. Hoc T; Henry L; Verdier M; Aubry D; Sedel L; Meunier A Bone; 2006 Apr; 38(4):466-74. PubMed ID: 16332459 [TBL] [Abstract][Full Text] [Related]
25. Multilevel finite element modeling for the prediction of local cellular deformation in bone. Deligianni DD; Apostolopoulos CA Biomech Model Mechanobiol; 2008 Apr; 7(2):151-9. PubMed ID: 17431696 [TBL] [Abstract][Full Text] [Related]
26. Cement lines and interlamellar areas in compact bone as strain amplifiers - contributors to elasticity, fracture toughness and mechanotransduction. Nobakhti S; Limbert G; Thurner PJ J Mech Behav Biomed Mater; 2014 Jan; 29():235-51. PubMed ID: 24113298 [TBL] [Abstract][Full Text] [Related]
27. Finite element modeling of trabecular bone damage. Kosmopoulos V; Keller TS Comput Methods Biomech Biomed Engin; 2003 Jun; 6(3):209-16. PubMed ID: 12888432 [TBL] [Abstract][Full Text] [Related]
28. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Adachi T; Osako Y; Tanaka M; Hojo M; Hollister SJ Biomaterials; 2006 Jul; 27(21):3964-72. PubMed ID: 16584771 [TBL] [Abstract][Full Text] [Related]
29. On the mechanical characterization of compact bone structure using the homogenization theory. Aoubiza B; Crolet JM; Meunier A J Biomech; 1996 Dec; 29(12):1539-47. PubMed ID: 8945652 [TBL] [Abstract][Full Text] [Related]
30. Estimation of the effective transversely isotropic elastic constants of a material from known values of the material's orthotropic elastic constants. Yoon YJ; Yang G; Cowin SC Biomech Model Mechanobiol; 2002 Jun; 1(1):83-93. PubMed ID: 14586709 [TBL] [Abstract][Full Text] [Related]
31. Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone. Parnell WJ; Vu MB; Grimal Q; Naili S Biomech Model Mechanobiol; 2012 Jul; 11(6):883-901. PubMed ID: 22109098 [TBL] [Abstract][Full Text] [Related]
32. Influences of spherical tip radius, contact depth, and contact area on nanoindentation properties of bone. Paietta RC; Campbell SE; Ferguson VL J Biomech; 2011 Jan; 44(2):285-90. PubMed ID: 21092970 [TBL] [Abstract][Full Text] [Related]
33. Analytical basis for the determination of the lacunar-canalicular permeability of bone using cyclic loading. Benalla M; Cardoso L; Cowin SC Biomech Model Mechanobiol; 2012 Jul; 11(6):767-80. PubMed ID: 21959747 [TBL] [Abstract][Full Text] [Related]
34. Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid. Wang C; Feng L; Jasiuk I J Biomech Eng; 2009 Dec; 131(12):121008. PubMed ID: 20524731 [TBL] [Abstract][Full Text] [Related]
35. Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Skedros JG; Mason MW; Bloebaum RD Anat Rec; 1994 Aug; 239(4):405-13. PubMed ID: 7978364 [TBL] [Abstract][Full Text] [Related]
36. Couple-stress moduli of a trabecular bone idealized as a 3D periodic cellular network. Yoo A; Jasiuk I J Biomech; 2006; 39(12):2241-52. PubMed ID: 16153655 [TBL] [Abstract][Full Text] [Related]
37. Analytical approach to recovering bone porosity from effective complex shear modulus. Bonifasi-Lista C; Cherkaev E; Yeni YN J Biomech Eng; 2009 Dec; 131(12):121003. PubMed ID: 20524726 [TBL] [Abstract][Full Text] [Related]
38. A two-parameter model of the effective elastic tensor for cortical bone. Grimal Q; Rus G; Parnell WJ; Laugier P J Biomech; 2011 May; 44(8):1621-5. PubMed ID: 21453920 [TBL] [Abstract][Full Text] [Related]
39. [Wolff's law-based continuum topology optimization method and its application in biomechanics]. Cai K; Zhang H; Luo Y; Chen B Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617 [TBL] [Abstract][Full Text] [Related]
40. Smooth surface micro finite element modelling of a cancellous bone analogue material. Leung SY; Browne M; New AM Proc Inst Mech Eng H; 2008 Jan; 222(1):145-9. PubMed ID: 18335725 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]