These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 17558647)

  • 1. A real time hyperelastic tissue model.
    Zhong H; Peters T
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):185-93. PubMed ID: 17558647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transversely isotropic hyperelastic constitutive model of the PDL. Analytical and computational aspects.
    Limbert G; Middleton J; Laizans J; Dobelis M; Knets I
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):337-45. PubMed ID: 14675954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liver tissue characterization from uniaxial stress-strain data using probabilistic and inverse finite element methods.
    Fu YB; Chui CK; Teo CL
    J Mech Behav Biomed Mater; 2013 Apr; 20():105-12. PubMed ID: 23455167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling and simulation of porcine liver tissue indentation using finite element method and uniaxial stress-strain data.
    Fu YB; Chui CK
    J Biomech; 2014 Jul; 47(10):2430-5. PubMed ID: 24811044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling, simulation, and optimal initiation planning for needle insertion into the liver.
    Sharifi Sedeh R; Ahmadian MT; Janabi-Sharifi F
    J Biomech Eng; 2010 Apr; 132(4):041001. PubMed ID: 20387964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials.
    Evans SL
    Comput Methods Biomech Biomed Engin; 2009 Jun; 12(3):319-32. PubMed ID: 19199169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons.
    Natali AN; Pavan PG; Carniel EL; Lucisano ME; Taglialavoro G
    Med Eng Phys; 2005 Apr; 27(3):209-14. PubMed ID: 15694603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperelastic anisotropic microplane constitutive model for annulus fibrosus.
    Caner FC; Guo Z; Moran B; Bazant ZP; Carol I
    J Biomech Eng; 2007 Oct; 129(5):632-41. PubMed ID: 17887888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic constitutive equations and experimental tensile behavior of brain tissue.
    Velardi F; Fraternali F; Angelillo M
    Biomech Model Mechanobiol; 2006 Mar; 5(1):53-61. PubMed ID: 16315049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the hyperelastic properties of tissue slices with tumour inclusion.
    O'Hagan JJ; Samani A
    Phys Med Biol; 2008 Dec; 53(24):7087-106. PubMed ID: 19015576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transversally isotropic elasto-damage constitutive model for the periodontal ligament.
    Natali AN; Pavan PG; Carniel EL; Dorow C
    Comput Methods Biomech Biomed Engin; 2003; 6(5-6):329-36. PubMed ID: 14675953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse finite element characterization of the human myometrium derived from uniaxial compression experiments.
    Weiss S; Niederer P; Nava A; Caduff R; Bajka M
    Biomed Tech (Berl); 2008 Apr; 53(2):52-8. PubMed ID: 18605921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling soft-tissue deformation prior to cutting for surgical simulation: finite element analysis and study of cutting parameters.
    Chanthasopeephan T; Desai JP; Lau AC
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):349-59. PubMed ID: 17355046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation.
    Schwartz JM; Denninger M; Rancourt D; Moisan C; Laurendeau D
    Med Image Anal; 2005 Apr; 9(2):103-12. PubMed ID: 15721226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations.
    Ahn B; Kim J
    Med Image Anal; 2010 Apr; 14(2):138-48. PubMed ID: 19948423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.