These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 17558749)

  • 41. Measurements of nitrogen isotope composition of plants and surface soils along the altitudinal transect of the eastern slope of Mount Gongga in southwest China.
    Liu XZ; Wang G
    Rapid Commun Mass Spectrom; 2010 Oct; 24(20):3063-71. PubMed ID: 20872640
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms.
    Anderegg LD; HilleRisLambers J
    Glob Chang Biol; 2016 Mar; 22(3):1029-45. PubMed ID: 26663665
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Soil compaction effects on water status of ponderosa pine assessed through 13C/12C composition.
    Gomez GA; Singer MJ; Powers RF; Horwath WR
    Tree Physiol; 2002 May; 22(7):459-67. PubMed ID: 11986049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wood {delta}13C, {delta}18O and radial growth responses of residual red pine to variable retention harvesting.
    Powers MD; Pregitzer KS; Palik BJ; Webster CR
    Tree Physiol; 2010 Mar; 30(3):326-34. PubMed ID: 20038504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drought-induced adaptation of the xylem in Scots pine and pubescent oak.
    Eilmann B; Zweifel R; Buchmann N; Fonti P; Rigling A
    Tree Physiol; 2009 Aug; 29(8):1011-20. PubMed ID: 19483185
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assessing environmental and physiological controls over water relations in a Scots pine (Pinus sylvestris L.) stand through analyses of stable isotope composition of water and organic matter.
    Brandes E; Wenninger J; Koeniger P; Schindler D; Rennenberg H; Leibundgut C; Mayer H; Gessler A
    Plant Cell Environ; 2007 Jan; 30(1):113-27. PubMed ID: 17177880
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Needles stable carbon isotope composition and traits of Pinus sylvestris var. mongolica in sparse wood grassland in south edge of Keerqin Sandy Land under the conditions of different precipitation].
    Song LN; Zhu JJ; Li MC; Yan T; Zhang JX
    Ying Yong Sheng Tai Xue Bao; 2012 Jun; 23(6):1435-40. PubMed ID: 22937627
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Climate signals derived from cell anatomy of Scots pine in NE Germany.
    Liang W; Heinrich I; Simard S; Helle G; Liñán ID; Heinken T
    Tree Physiol; 2013 Aug; 33(8):833-44. PubMed ID: 23999138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Water limitations to carbon exchange in old-growth and young ponderosa pine stands.
    Irvine J; Law BE; Anthoni PM; Meinzer FC
    Tree Physiol; 2002 Feb; 22(2-3):189-96. PubMed ID: 11830415
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating old-growth ponderosa pine physiology using tree-rings, δ
    Ulrich DEM; Still C; Brooks JR; Kim Y; Meinzer FC
    Ecology; 2019 Jun; 100(6):e02656. PubMed ID: 30756385
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Drought alters timing, quantity, and quality of wood formation in Scots pine.
    Eilmann B; Zweifel R; Buchmann N; Graf Pannatier E; Rigling A
    J Exp Bot; 2011 May; 62(8):2763-71. PubMed ID: 21273335
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-series analysis of delta13C from tree rings. I. Time trends and autocorrelation.
    Monserud RA; Marshall JD
    Tree Physiol; 2001 Sep; 21(15):1087-102. PubMed ID: 11581016
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Natural abundances of 15N and 13C in leaves of some N2-fixing and non-N2-fixing trees and shrubs in Syria.
    Kurdali F; Al-Shamma'a M
    Isotopes Environ Health Stud; 2009 Sep; 45(3):198-207. PubMed ID: 20183233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ponderosa pine resin defenses and growth: metrics matter.
    Hood S; Sala A
    Tree Physiol; 2015 Nov; 35(11):1223-35. PubMed ID: 26433021
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Uniform climate sensitivity in tree-ring stable isotopes across species and sites in a mid-latitude temperate forest.
    Hartl-Meier C; Zang C; Büntgen U; Esper J; Rothe A; Göttlein A; Dirnböck T; Treydte K
    Tree Physiol; 2015 Jan; 35(1):4-15. PubMed ID: 25466725
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates.
    Sangüesa-Barreda G; Linares JC; Camarero JJ
    Tree Physiol; 2012 May; 32(5):585-98. PubMed ID: 22539634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Response differences of radial growth of
    Yang JW; Zhang QL; Song WQ; Zhang X; Li ZS; Zhang YD; Wang XC
    Ying Yong Sheng Tai Xue Bao; 2021 Oct; 32(10):3415-3427. PubMed ID: 34676702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Connections between climatic variables and the growth and needle dynamics of Scots pine (Pinus sylvestris L.) in Estonia and Lapland.
    Pensa M; Sepp M; Jalkanen R
    Int J Biometeorol; 2006 Mar; 50(4):205-14. PubMed ID: 16331502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Drivers of intra-seasonal δ
    Rinne-Garmston KT; Tang Y; Sahlstedt E; Adamczyk B; Saurer M; Salmon Y; Carrasco MDRD; Hölttä T; Lehmann MM; Mo L; Young GHF
    Plant Cell Environ; 2023 Sep; 46(9):2649-2666. PubMed ID: 37312624
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plasticity in gas-exchange physiology of mature Scots pine and European larch drive short- and long-term adjustments to changes in water availability.
    Feichtinger LM; Siegwolf RTW; Gessler A; Buchmann N; Lévesque M; Rigling A
    Plant Cell Environ; 2017 Sep; 40(9):1972-1983. PubMed ID: 28634999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.