These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 17558770)
1. Particulates and bacteria removal by ceramic microfiltration, UV photolysis, and their combination. Aidan A; Mehrvar M; Ibrahim TH; Nenov V J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):895-901. PubMed ID: 17558770 [TBL] [Abstract][Full Text] [Related]
2. Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter: conventional activated sludge followed by ultrafiltration versus membrane bioreactor. Sahar E; Ernst M; Godehardt M; Hein A; Herr J; Kazner C; Melin T; Cikurel H; Aharoni A; Messalem R; Brenner A; Jekel M Water Sci Technol; 2011; 63(4):733-40. PubMed ID: 21330721 [TBL] [Abstract][Full Text] [Related]
3. Effect of the mixed liquor suspended solid on permeate in a membrane bioreactor system applied for the treatment of sewage mixed with wastewater of the milk from the dairy industry. Poyatos JM; Molina-Muñoz M; Moreno B; González-López J; Hontoria E J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):1005-12. PubMed ID: 17558781 [TBL] [Abstract][Full Text] [Related]
4. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
5. Treatment of Bisphenol A-Containing Effluents from Aerobic Granular Sludge Reactors with the Use of Microfiltration and Ultrafiltration Ceramic Membranes. Zielińska M; Cydzik-Kwiatkowska A; Bułkowska K; Bernat K; Wojnowska-Baryła I Water Air Soil Pollut; 2017; 228(8):282. PubMed ID: 28769141 [TBL] [Abstract][Full Text] [Related]
6. Membrane bioreactors for water reclamation. Tao G; Kekre K; Wei Z; Lee TC; Viswanath B; Seah H Water Sci Technol; 2005; 51(6-7):431-40. PubMed ID: 16004005 [TBL] [Abstract][Full Text] [Related]
7. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters. Francy DS; Stelzer EA; Bushon RN; Brady AM; Williston AG; Riddell KR; Borchardt MA; Spencer SK; Gellner TM Water Res; 2012 Sep; 46(13):4164-78. PubMed ID: 22682268 [TBL] [Abstract][Full Text] [Related]
8. Highly integrated hybrid process with ceramic ultrafiltration-membrane for advanced treatment of drinking water: a pilot study. Guo J; Wang L; Zhu J; Zhang J; Sheng D; Zhang X J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(11):1413-9. PubMed ID: 23705617 [TBL] [Abstract][Full Text] [Related]
9. Contribution of microfiltration on phosphorus removal in the sequencing anoxic/anaerobic membrane bioreactor. Cho J; Song KG; Ahn KH Bioprocess Biosyst Eng; 2009 Aug; 32(5):593-602. PubMed ID: 19048295 [TBL] [Abstract][Full Text] [Related]
10. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR). Jin L; Ng HY; Ong SL Water Sci Technol; 2009; 59(11):2213-8. PubMed ID: 19494461 [TBL] [Abstract][Full Text] [Related]
11. Treatment of phosphate-containing oily wastewater by coagulation and microfiltration. Zhang J; Sun YX; Huang ZF; Liu XQ; Meng GY J Environ Sci (China); 2006; 18(4):629-33. PubMed ID: 17078536 [TBL] [Abstract][Full Text] [Related]
12. Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse. Zhang K; Farahbakhsh K Water Res; 2007 Jun; 41(12):2816-24. PubMed ID: 17449083 [TBL] [Abstract][Full Text] [Related]
13. Efficient direct membrane filtration (DMF) of municipal wastewater for carbon recovery: Application of a simple pretreatment and selection of an appropriate membrane pore size. Sugiyama T; Ito Y; Hafuka A; Kimura K Water Res; 2022 Aug; 221():118810. PubMed ID: 35834972 [TBL] [Abstract][Full Text] [Related]
14. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration. Colon G; Sager JC Life Support Biosph Sci; 2001; 7(4):291-9. PubMed ID: 11676457 [TBL] [Abstract][Full Text] [Related]
15. Removal performance of heavy metals in MBR systems and their influence in water reuse. Arévalo J; Ruiz LM; Pérez J; Moreno B; Gómez MÁ Water Sci Technol; 2013; 67(4):894-900. PubMed ID: 23306270 [TBL] [Abstract][Full Text] [Related]
16. Microfiltration of skim milk and modified skim milk using a 0.1-µm ceramic uniform transmembrane pressure system at temperatures of 50, 55, 60, and 65°C. Hurt EE; Adams MC; Barbano DM J Dairy Sci; 2015 Feb; 98(2):765-80. PubMed ID: 25497798 [TBL] [Abstract][Full Text] [Related]
17. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors. Jin L; Ong SL; Ng HY Water Res; 2010 Dec; 44(20):5907-18. PubMed ID: 20709347 [TBL] [Abstract][Full Text] [Related]
18. Use of Ceramic Membranes in a Membrane Filtration Supported by Coagulation for the Treatment of Dairy Wastewater. Zielińska M; Galik M Water Air Soil Pollut; 2017; 228(5):173. PubMed ID: 28458404 [TBL] [Abstract][Full Text] [Related]
19. Key process parameters involved in the treatment of olive mill wastewater by membrane bioreactor. Jaouad Y; Villain-Gambier M; Mandi L; Marrot B; Ouazzani N Environ Technol; 2019 Oct; 40(24):3162-3175. PubMed ID: 29634406 [TBL] [Abstract][Full Text] [Related]
20. Production efficiency of micellar casein concentrate using polymeric spiral-wound microfiltration membranes. Beckman SL; Zulewska J; Newbold M; Barbano DM J Dairy Sci; 2010 Oct; 93(10):4506-17. PubMed ID: 20854984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]