These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 17559100)
21. Hypothalamic inferior lobe and lateral torus connections in a percomorph teleost, the red cichlid (Hemichromis lifalili). Ahrens K; Wullimann MF J Comp Neurol; 2002 Jul; 449(1):43-64. PubMed ID: 12115692 [TBL] [Abstract][Full Text] [Related]
22. More a finger than a nose: the trigeminal motor and sensory innervation of the Schnauzenorgan in the elephant-nose fish Gnathonemus petersii. Amey-Özel M; von der Emde G; Engelmann J; Grant K J Comp Neurol; 2015 Apr; 523(5):769-89. PubMed ID: 25388854 [TBL] [Abstract][Full Text] [Related]
23. Connections of the basal forebrain of the weakly electric fish, Eigenmannia virescens. Wong CJ J Comp Neurol; 1997 Dec; 389(1):49-64. PubMed ID: 9390759 [TBL] [Abstract][Full Text] [Related]
24. Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus. Murakami T; Morita Y; Ito H J Comp Neurol; 1983 May; 216(2):115-31. PubMed ID: 6863598 [TBL] [Abstract][Full Text] [Related]
25. Auditory, electrosensory, and mechanosensory lateral line pathways through the forebrain in channel catfishes. Striedter GF J Comp Neurol; 1991 Oct; 312(2):311-31. PubMed ID: 1748736 [TBL] [Abstract][Full Text] [Related]
26. Central connections of the trigeminal motor command system in the weakly electric Elephantnose fish (Gnathonemus petersii). Amey-Özel M; Anders S; Grant K; von der Emde G J Comp Neurol; 2019 Nov; 527(16):2703-2729. PubMed ID: 30980526 [TBL] [Abstract][Full Text] [Related]
27. Neurons of the posterior subdivision of the nucleus preopticus periventricularis project to the preglomerular nucleus in the weakly electric fish, Apteronotus leptorhynchus. Zupanc GK; Horschke I Brain Res; 1997 Nov; 774(1-2):106-15. PubMed ID: 9452198 [TBL] [Abstract][Full Text] [Related]
28. Serotoninergic neurons in the mormyrid brain and their projection to the preelectromotor and primary electrosensory centers: immunohistochemical study. Grant K; Clausse S; Libouban S; Szabo T J Comp Neurol; 1989 Mar; 281(1):114-28. PubMed ID: 2925896 [TBL] [Abstract][Full Text] [Related]
29. General visceral and gustatory connections of the posterior thalamic nucleus of goldfish. Kato T; Yamada Y; Yamamoto N J Comp Neurol; 2011 Oct; 519(15):3102-23. PubMed ID: 21618226 [TBL] [Abstract][Full Text] [Related]
30. Localization of nicotinamide adenine dinucleotide phosphate-diaphorase activity in electrosensory and electromotor systems of a gymnotiform teleost, Apteronotus leptorhynchus. Turner RW; Moroz LL J Comp Neurol; 1995 May; 356(2):261-74. PubMed ID: 7629318 [TBL] [Abstract][Full Text] [Related]
31. Expression of the cannabinoid CB1 receptor in the gymnotiform fish brain and its implications for the organization of the teleost pallium. Harvey-Girard E; Giassi AC; Ellis W; Maler L J Comp Neurol; 2013 Mar; 521(4):949-75. PubMed ID: 22886386 [TBL] [Abstract][Full Text] [Related]
32. Experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). II: Dorsal area and preoptic region. Folgueira M; Anadón R; Yáñez J J Comp Neurol; 2004 Dec; 480(2):204-33. PubMed ID: 15514931 [TBL] [Abstract][Full Text] [Related]
33. Structural and functional aspects of the fast electrosensory pathway in the electrosensory lateral line lobe of the pulse fish Gymnotus carapo. Castelló ME; Caputi A; Trujillo-Cenóz O J Comp Neurol; 1998 Nov; 401(4):549-63. PubMed ID: 9826277 [TBL] [Abstract][Full Text] [Related]
34. Recurrent feedback in the mormyrid electrosensory system: cells of the preeminential and lateral toral nuclei. Sawtell NB; Mohr C; Bell CC J Neurophysiol; 2005 Apr; 93(4):2090-103. PubMed ID: 15774712 [TBL] [Abstract][Full Text] [Related]
35. Tectal input to the central posterior/prepacemaker nucleus of weakly electric fish, Apteronotus leptorhynchus: an in vitro tract-tracing study. Zupanc GK; Horschke I Brain Res; 1996 Nov; 739(1-2):201-9. PubMed ID: 8955940 [TBL] [Abstract][Full Text] [Related]
36. The nucleus praeeminentialis: a Golgi study of a feedback center in the electrosensory system of gymnotid fish. Sas E; Maler L J Comp Neurol; 1983 Dec; 221(2):127-44. PubMed ID: 6655077 [TBL] [Abstract][Full Text] [Related]
37. Corticotropin releasing factor in the brain of the gymnotiform fish, Apteronotus leptorhynchus: immunohistochemical studies combined with neuronal tract tracing. Zupanc GK; Horschke I; Lovejoy DA Gen Comp Endocrinol; 1999 Jun; 114(3):349-64. PubMed ID: 10336823 [TBL] [Abstract][Full Text] [Related]
38. A distinct population of neurons in the central posterior/prepacemaker nucleus project to the nucleus preopticus periventricularis in the weakly electric gymnotiform fish, Apteronotus leptorhynchus. Zupanc GK; Horschke I Brain Res; 1997 Nov; 776(1-2):117-25. PubMed ID: 9439803 [TBL] [Abstract][Full Text] [Related]
39. Immunohistochemical localization of ryanodine binding proteins in the central nervous system of gymnotiform fish. Zupanc GK; Airey JA; Maler L; Sutko JL; Ellisman MH J Comp Neurol; 1992 Nov; 325(2):135-51. PubMed ID: 1460110 [TBL] [Abstract][Full Text] [Related]
40. Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. II. Anatomical differences. Shumway CA J Neurosci; 1989 Dec; 9(12):4400-15. PubMed ID: 2556508 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]