These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 17559109)
21. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Oh SH; Park IK; Kim JM; Lee JH Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648 [TBL] [Abstract][Full Text] [Related]
22. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherules for large bone tissue engineering in vivo. I. Preparation and characterization of scaffold. Peng Q; Jiang F; Huang P; Zhou S; Weng J; Bao C; Zhang C; Yu H J Biomed Mater Res A; 2010 Jun; 93(3):920-9. PubMed ID: 19708076 [TBL] [Abstract][Full Text] [Related]
23. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies. Cushnie EK; Khan YM; Laurencin CT J Biomed Mater Res A; 2008 Jan; 84(1):54-62. PubMed ID: 17600320 [TBL] [Abstract][Full Text] [Related]
24. The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants. Porter AE; Buckland T; Hing K; Best SM; Bonfield W J Biomed Mater Res A; 2006 Jul; 78(1):25-33. PubMed ID: 16596583 [TBL] [Abstract][Full Text] [Related]
25. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
26. Tissue engineering of bone: search for a better scaffold. Mastrogiacomo M; Muraglia A; Komlev V; Peyrin F; Rustichelli F; Crovace A; Cancedda R Orthod Craniofac Res; 2005 Nov; 8(4):277-84. PubMed ID: 16238608 [TBL] [Abstract][Full Text] [Related]
27. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Hing KA; Revell PA; Smith N; Buckland T Biomaterials; 2006 Oct; 27(29):5014-26. PubMed ID: 16790272 [TBL] [Abstract][Full Text] [Related]
28. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Shor L; Güçeri S; Wen X; Gandhi M; Sun W Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162 [TBL] [Abstract][Full Text] [Related]
29. Pore characteristics of bone substitute materials assessed by microcomputed tomography. Klein M; Goetz H; Pazen S; Al-Nawas B; Wagner W; Duschner H Clin Oral Implants Res; 2009 Jan; 20(1):67-74. PubMed ID: 19126109 [TBL] [Abstract][Full Text] [Related]
30. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo. Guda T; Walker JA; Singleton B; Hernandez J; Oh DS; Appleford MR; Ong JL; Wenke JC J Biomater Appl; 2014 Mar; 28(7):1016-27. PubMed ID: 23771772 [TBL] [Abstract][Full Text] [Related]
31. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361 [TBL] [Abstract][Full Text] [Related]
32. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758 [TBL] [Abstract][Full Text] [Related]
33. Osteogenesis depending on geometry of porous hydroxyapatite scaffolds. Yoshikawa M; Tsuji N; Shimomura Y; Hayashi H; Ohgushi H Calcif Tissue Int; 2008 Aug; 83(2):139-45. PubMed ID: 18679740 [TBL] [Abstract][Full Text] [Related]
34. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
35. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. Wilson CE; de Bruijn JD; van Blitterswijk CA; Verbout AJ; Dhert WJ J Biomed Mater Res A; 2004 Jan; 68(1):123-32. PubMed ID: 14661257 [TBL] [Abstract][Full Text] [Related]
36. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Jones AC; Arns CH; Sheppard AP; Hutmacher DW; Milthorpe BK; Knackstedt MA Biomaterials; 2007 May; 28(15):2491-504. PubMed ID: 17335896 [TBL] [Abstract][Full Text] [Related]
37. The nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair. Cui Y; Liu Y; Cui Y; Jing X; Zhang P; Chen X Acta Biomater; 2009 Sep; 5(7):2680-92. PubMed ID: 19376759 [TBL] [Abstract][Full Text] [Related]
38. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Landi E; Valentini F; Tampieri A Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459 [TBL] [Abstract][Full Text] [Related]
39. Bone response to free form-fabricated hydroxyapatite and zirconia scaffolds: a histological study in the human maxilla. Malmström J; Slotte C; Adolfsson E; Norderyd O; Thomsen P Clin Oral Implants Res; 2009 Apr; 20(4):379-85. PubMed ID: 19298291 [TBL] [Abstract][Full Text] [Related]
40. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]