BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 17559225)

  • 1. Metabolic protein patterns and monascorubrin production revealed through proteomic approach for Monascus pilosus treated with cycloheximide.
    Lin WY; Chang JY; Tsai PC; Pan TM
    J Agric Food Chem; 2007 Jul; 55(14):5559-68. PubMed ID: 17559225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic response to intracellular proteins of Monascus pilosus grown under phosphate-limited complex medium with different growth rates and pigment production.
    Lin WY; Ting YC; Pan TM
    J Agric Food Chem; 2007 Jan; 55(2):467-74. PubMed ID: 17227081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulation mechanisms of soluble starch and glycerol for production of azaphilone pigments in Monascus purpureus FAFU618 as revealed by comparative proteomic and transcriptional analyses.
    Huang ZR; Zhou WB; Yang XL; Tong AJ; Hong JL; Guo WL; Li TT; Jia RB; Pan YY; Lin J; Lv XC; Liu B
    Food Res Int; 2018 Apr; 106():626-635. PubMed ID: 29579968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling the Monascus pilosus proteome during nitrogen limitation.
    Lin WY; Chang JY; Hish CH; Pan TM
    J Agric Food Chem; 2008 Jan; 56(2):433-41. PubMed ID: 18095644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome response of Monascus pilosus during rice starch limitation with suppression of monascorubramine production.
    Lin WY; Chang JY; Hish CH; Pan TM
    J Agric Food Chem; 2007 Oct; 55(22):9226-34. PubMed ID: 17924709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome changes in Caco-2 cells treated with Monascus-fermented red mold rice extract.
    Lin WY; Hsu WY; Hish CH; Pan TM
    J Agric Food Chem; 2007 Oct; 55(22):8987-94. PubMed ID: 17927198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis of Caco-2 cells treated with monacolin K.
    Lin WY; Song CY; Pan TM
    J Agric Food Chem; 2006 Aug; 54(17):6192-200. PubMed ID: 16910707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidic conditions induce the accumulation of orange Monascus pigments during liquid-state fermentation of Monascus ruber M7.
    Li L; Chen S; Gao M; Ding B; Zhang J; Zhou Y; Liu Y; Yang H; Wu Q; Chen F
    Appl Microbiol Biotechnol; 2019 Oct; 103(20):8393-8402. PubMed ID: 31501941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iTRAQ-Based Quantitative Proteomic Analysis Reveals Changes in Metabolite Biosynthesis in
    Zhang J; Liu Y; Li L; Gao M
    Toxins (Basel); 2018 Oct; 10(11):. PubMed ID: 30380661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis reveals differentially secreted proteins in the urine from patients with clear cell renal cell carcinoma.
    Sandim V; Pereira Dde A; Kalume DE; Oliveira-Carvalho AL; Ornellas AA; Soares MR; Alves G; Zingali RB
    Urol Oncol; 2016 Jan; 34(1):5.e11-25. PubMed ID: 26420021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Effects of the pksCT Gene on Monascus aurantiacus Li As3.4384 Using Gas Chromatography--Time-of-Flight Mass Spectrometry-Based Metabolomics.
    Huang Z; Zhang S; Xu Y; Li L; Li Y
    J Agric Food Chem; 2016 Feb; 64(7):1565-74. PubMed ID: 26824776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alleviation of metabolic syndrome by monascin and ankaflavin: the perspective of Monascus functional foods.
    Lin CH; Lin TH; Pan TM
    Food Funct; 2017 Jun; 8(6):2102-2109. PubMed ID: 28608901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of blue light on pigment biosynthesis of Monascus.
    Chen D; Xue C; Chen M; Wu S; Li Z; Wang C
    J Microbiol; 2016 Apr; 54(4):305-10. PubMed ID: 27033206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome analysis reveals global response to deletion of mrflbA in Monascus ruber.
    Yan Q; Zhang Z; Yang Y; Chen F; Shao Y
    J Microbiol; 2018 Apr; 56(4):255-263. PubMed ID: 29492865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supplementary effect of whey components on the monascin productivity of Monascus sp.
    Huang Q; Miyaki N; Li Z; Takahashi Y; Ishizuka S; Hayakawa T; Wakamatsu JI; Kumura H
    J Sci Food Agric; 2023 Jun; 103(8):4234-4241. PubMed ID: 36732039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluconazole treatment enhances extracellular release of red pigments in the fungus Monascus purpureus.
    Koli SH; Suryawanshi RK; Patil CD; Patil SV
    FEMS Microbiol Lett; 2017 Apr; 364(8):. PubMed ID: 28333308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network generation enhances interpretation of proteomics data sets by a combination of two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry.
    Wang X; Zhang A; Sun H; Wu G; Sun W; Yan G
    Analyst; 2012 Oct; 137(20):4703-11. PubMed ID: 22950079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Proteomics Analysis by Sequential Window Acquisition of All Theoretical Mass Spectra-Mass Spectrometry Reveals a Cross-Protection Mechanism for
    Zhou B; Yang J; Bi L; Li J; Ma Y; Tian Y; Zhong H; Ren J
    J Agric Food Chem; 2020 Jun; 68(24):6672-6682. PubMed ID: 32489101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of submerged fermentation medium for citrinin-free monascin production by Monascus.
    Chen D; Xue Y; Chen M; Li Z; Wang C
    Prep Biochem Biotechnol; 2016 Nov; 46(8):772-779. PubMed ID: 26950801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress.
    Kim I; Yun H; Jin I
    J Microbiol Biotechnol; 2007 Feb; 17(2):207-17. PubMed ID: 18051751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.