BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 17559387)

  • 1. Oomycete genomics: new insights and future directions.
    Lamour KH; Win J; Kamoun S
    FEMS Microbiol Lett; 2007 Sep; 274(1):1-8. PubMed ID: 17559387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution.
    Judelson HS
    Adv Genet; 2007; 57():97-141. PubMed ID: 17352903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes.
    Adhikari BN; Hamilton JP; Zerillo MM; Tisserat N; Lévesque CA; Buell CR
    PLoS One; 2013; 8(10):e75072. PubMed ID: 24124466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How do obligate parasites evolve? A multi-gene phylogenetic analysis of downy mildews.
    Göker M; Voglmayr H; Riethmüller A; Oberwinkler F
    Fungal Genet Biol; 2007 Feb; 44(2):105-22. PubMed ID: 16990040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Progress in RXLR Effector Research.
    Anderson RG; Deb D; Fedkenheuer K; McDowell JM
    Mol Plant Microbe Interact; 2015 Oct; 28(10):1063-72. PubMed ID: 26125490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The problem of how fungal and oomycete avirulence proteins enter plant cells.
    Ellis J; Catanzariti AM; Dodds P
    Trends Plant Sci; 2006 Feb; 11(2):61-3. PubMed ID: 16406302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytophthora genomics: the plant destroyers' genome decoded.
    Govers F; Gijzen M
    Mol Plant Microbe Interact; 2006 Dec; 19(12):1295-301. PubMed ID: 17153913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent advances in oomycete genomics.
    McGowan J; Fitzpatrick DA
    Adv Genet; 2020; 105():175-228. PubMed ID: 32560787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular phylogeny of Phytophthora and related oomycetes.
    Cooke DE; Drenth A; Duncan JM; Wagels G; Brasier CM
    Fungal Genet Biol; 2000 Jun; 30(1):17-32. PubMed ID: 10955905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences.
    Blair JE; Coffey MD; Park SY; Geiser DM; Kang S
    Fungal Genet Biol; 2008 Mar; 45(3):266-77. PubMed ID: 18039586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora.
    Sharma R; Xia X; Cano LM; Evangelisti E; Kemen E; Judelson H; Oome S; Sambles C; van den Hoogen DJ; Kitner M; Klein J; Meijer HJ; Spring O; Win J; Zipper R; Bode HB; Govers F; Kamoun S; Schornack S; Studholme DJ; Van den Ackerveken G; Thines M
    BMC Genomics; 2015 Oct; 16():741. PubMed ID: 26438312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.
    Richards TA; Dacks JB; Jenkinson JM; Thornton CR; Talbot NJ
    Curr Biol; 2006 Sep; 16(18):1857-64. PubMed ID: 16979565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequencing of the Litchi Downy Blight Pathogen Reveals It Is a Phytophthora Species With Downy Mildew-Like Characteristics.
    Ye W; Wang Y; Shen D; Li D; Pu T; Jiang Z; Zhang Z; Zheng X; Tyler BM; Wang Y
    Mol Plant Microbe Interact; 2016 Jul; 29(7):573-83. PubMed ID: 27183038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genetics and biology of Phytophthora infestans: modern approaches to a historical challenge.
    Judelson HS
    Fungal Genet Biol; 1997 Oct; 22(2):65-76. PubMed ID: 9367653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis.
    Tyler BM; Tripathy S; Zhang X; Dehal P; Jiang RH; Aerts A; Arredondo FD; Baxter L; Bensasson D; Beynon JL; Chapman J; Damasceno CM; Dorrance AE; Dou D; Dickerman AW; Dubchak IL; Garbelotto M; Gijzen M; Gordon SG; Govers F; Grunwald NJ; Huang W; Ivors KL; Jones RW; Kamoun S; Krampis K; Lamour KH; Lee MK; McDonald WH; Medina M; Meijer HJ; Nordberg EK; Maclean DJ; Ospina-Giraldo MD; Morris PF; Phuntumart V; Putnam NH; Rash S; Rose JK; Sakihama Y; Salamov AA; Savidor A; Scheuring CF; Smith BM; Sobral BW; Terry A; Torto-Alalibo TA; Win J; Xu Z; Zhang H; Grigoriev IV; Rokhsar DS; Boore JL
    Science; 2006 Sep; 313(5791):1261-6. PubMed ID: 16946064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms and evolution of virulence in oomycetes.
    Jiang RH; Tyler BM
    Annu Rev Phytopathol; 2012; 50():295-318. PubMed ID: 22920560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the cutinase gene family: evidence for lateral gene transfer of a candidate Phytophthora virulence factor.
    Belbahri L; Calmin G; Mauch F; Andersson JO
    Gene; 2008 Jan; 408(1-2):1-8. PubMed ID: 18024004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium homeostasis influences the locomotion and encystment of zoospores of plant pathogenic oomycetes.
    Appiah AA; van West P; Osborne MC; Gow NA
    Fungal Genet Biol; 2005 Mar; 42(3):213-23. PubMed ID: 15707842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic and transcriptional analysis of an expanded bZIP transcription factor family in Phytophthora sojae.
    Ye W; Wang Y; Dong S; Tyler BM; Wang Y
    BMC Genomics; 2013 Nov; 14(1):839. PubMed ID: 24286285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oomycete-plant coevolution: recent advances and future prospects.
    Thines M; Kamoun S
    Curr Opin Plant Biol; 2010 Aug; 13(4):427-33. PubMed ID: 20447858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.