These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 17559412)

  • 41. Loss of heterozygosity at an unlinked genomic locus is responsible for the phenotype of a Candida albicans sap4Δ sap5Δ sap6Δ mutant.
    Dunkel N; Morschhäuser J
    Eukaryot Cell; 2011 Jan; 10(1):54-62. PubMed ID: 21097666
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mutations on CaENO1 in Candida albicans inhibit cell growth in the presence of glucose.
    Yang YL; Chen HF; Kuo TJ; Lin CY
    J Biomed Sci; 2006 May; 13(3):313-21. PubMed ID: 16453178
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chromosome reorganization in Candida albicans 1001 strain.
    Navarro-García F; Pérez-Diaz RM; Magee BB; Pla J; Nombela C; Magee Pt
    J Med Vet Mycol; 1995; 33(6):361-6. PubMed ID: 8683403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The molecular genetics of Candida albicans.
    Lott TJ; Magee PT; Barton R; Chu W; Kwon-Chung KJ; Grindle S; Homma M; Iwaguchi S; Kelly R; Lasker BA
    J Med Vet Mycol; 1992; 30 Suppl 1():77-85. PubMed ID: 1474462
    [No Abstract]   [Full Text] [Related]  

  • 45. Parity among interpretation methods of MLEE patterns and disparity among clustering methods in epidemiological typing of Candida albicans.
    Boriollo MF; Rosa EA; Gonçalves RB; Höfling JF
    J Microbiol Methods; 2006 Mar; 64(3):346-65. PubMed ID: 16005996
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitotic recombination in Candida albicans: recessive lethal alleles linked to a gene required for methionine biosynthesis.
    Whelan WL; Soll DR
    Mol Gen Genet; 1982; 187(3):477-85. PubMed ID: 6757662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The diploid genome sequence of Candida albicans.
    Jones T; Federspiel NA; Chibana H; Dungan J; Kalman S; Magee BB; Newport G; Thorstenson YR; Agabian N; Magee PT; Davis RW; Scherer S
    Proc Natl Acad Sci U S A; 2004 May; 101(19):7329-34. PubMed ID: 15123810
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans.
    Muzzey D; Sherlock G; Weissman JS
    Genome Res; 2014 Jun; 24(6):963-73. PubMed ID: 24732588
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biochemical heterozygosity and phenotypic variability of polygenic traits.
    Chakraborty R
    Heredity (Edinb); 1987 Aug; 59 ( Pt 1)():19-28. PubMed ID: 3610658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Natural heterozygosity in Candida albicans.
    Whelan WL; Magee PT
    J Bacteriol; 1981 Feb; 145(2):896-903. PubMed ID: 6780534
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Genetic control of Silver fir isozymes (Abies alba Mill.) of the Ukrainian Carpathian Mountains].
    Korshikov II; Morozova NN; Pirko IaV
    Tsitol Genet; 2003; 37(3):36-40. PubMed ID: 12945181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Heterogeneity is not always a source of noise: Stochastic gene expression in regulatory heterozygote.
    Jang J; Amblard F; Ghim CM
    Phys Rev E; 2021 Oct; 104(4-1):044401. PubMed ID: 34781474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Observed relationships between protein heterozygosity and protein genetic distance and comparisons with neutral expectations.
    Ward RD; Skibinski DO
    Genet Res; 1985 Jun; 45(3):315-40. PubMed ID: 4029617
    [No Abstract]   [Full Text] [Related]  

  • 54. Genetic heterogeneity and allelic variation in the mucopolysaccharidoses. Introduction.
    Johns Hopkins Med J; 1980 Feb; 146(2):71-2. PubMed ID: 6766517
    [No Abstract]   [Full Text] [Related]  

  • 55. Genic heterozygosity in a population of Eutamias panamintinus.
    Kaufman DW; Selander RK; Smith MH
    J Mammal; 1973 Aug; 54(3):776-8. PubMed ID: 4744942
    [No Abstract]   [Full Text] [Related]  

  • 56. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity.
    Bennett RJ; Forche A; Berman J
    Cold Spring Harb Perspect Med; 2014 Jul; 4(10):. PubMed ID: 25081629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans.
    Fan Y; He H; Dong Y; Pan H
    Mycopathologia; 2013 Dec; 176(5-6):329-35. PubMed ID: 24002103
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An MDR1 promoter allele with higher promoter activity is common in clinically isolated strains of Candida albicans.
    Bruzual I; Kumamoto CA
    Mol Genet Genomics; 2011 Dec; 286(5-6):347-57. PubMed ID: 21972105
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genomic plasticity of the human fungal pathogen Candida albicans.
    Selmecki A; Forche A; Berman J
    Eukaryot Cell; 2010 Jul; 9(7):991-1008. PubMed ID: 20495058
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Promoter heterozygosity at the Candida albicans CHS7 gene is translated into differential expression between alleles.
    Sanz M; Valle R; Roncero C
    FEMS Yeast Res; 2007 Sep; 7(6):993-1003. PubMed ID: 17559412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.