BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 17559637)

  • 1. Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data.
    Wu WS; Li WH; Chen BS
    BMC Bioinformatics; 2007 Jun; 8():188. PubMed ID: 17559637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying a Transcription Factor's Regulatory Targets from its Binding Targets.
    Lai F; Chang JS; Wu WS
    Gene Regul Syst Bio; 2010 Dec; 4():125-33. PubMed ID: 21245946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic identification of cell cycle regulated transcription factors from microarray time series data.
    Cheng C; Li LM
    BMC Genomics; 2008 Mar; 9():116. PubMed ID: 18315882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic identification of yeast cell cycle transcription factors using multiple data sources.
    Wu WS; Li WH
    BMC Bioinformatics; 2008 Dec; 9():522. PubMed ID: 19061501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle.
    Wu WS; Li WH; Chen BS
    BMC Bioinformatics; 2006 Sep; 7():421. PubMed ID: 17010188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model.
    Youn A; Reiss DJ; Stuetzle W
    Bioinformatics; 2010 Aug; 26(15):1879-86. PubMed ID: 20525821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling transcriptional regulatory programs by integrative analysis of microarray and transcription factor binding data.
    Li H; Zhan M
    Bioinformatics; 2008 Sep; 24(17):1874-80. PubMed ID: 18586698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome network component analysis with limited microarray data.
    Galbraith SJ; Tran LM; Liao JC
    Bioinformatics; 2006 Aug; 22(15):1886-94. PubMed ID: 16766556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properly defining the targets of a transcription factor significantly improves the computational identification of cooperative transcription factor pairs in yeast.
    Wu WS; Lai FJ
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S10. PubMed ID: 26679776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast cell cycle transcription factors identification by variable selection criteria.
    Wang H; Wang YH; Wu WS
    Gene; 2011 Oct; 485(2):172-6. PubMed ID: 21703335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChIPCodis: mining complex regulatory systems in yeast by concurrent enrichment analysis of chip-on-chip data.
    Abascal F; Carmona-Saez P; Carazo JM; Pascual-Montano A
    Bioinformatics; 2008 May; 24(9):1208-9. PubMed ID: 18339638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative analysis of time course microarray data and DNA sequence data via log-linear models for identifying dynamic transcriptional regulatory networks.
    Choi HS; Kim Y; Cho KH; Park T
    Int J Data Min Bioinform; 2013; 7(1):38-57. PubMed ID: 23437514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data.
    Liu X; Jessen WJ; Sivaganesan S; Aronow BJ; Medvedovic M
    BMC Bioinformatics; 2007 Aug; 8():283. PubMed ID: 17683565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering transcription factor regulatory targets using gene expression and binding data.
    Maienschein-Cline M; Zhou J; White KP; Sciammas R; Dinner AR
    Bioinformatics; 2012 Jan; 28(2):206-13. PubMed ID: 22084256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F; Foat BC; Bussemaker HJ
    BMC Bioinformatics; 2004 Mar; 5():31. PubMed ID: 15113405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping functional transcription factor networks from gene expression data.
    Haynes BC; Maier EJ; Kramer MH; Wang PI; Brown H; Brent MR
    Genome Res; 2013 Aug; 23(8):1319-28. PubMed ID: 23636944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking.
    Wu G; Ji H
    BMC Bioinformatics; 2013 Jun; 14():188. PubMed ID: 23758851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning position weight matrices from sequence and expression data.
    Chen X; Guo L; Fan Z; Jiang T
    Comput Syst Bioinformatics Conf; 2007; 6():249-60. PubMed ID: 17951829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data.
    Ruan J; Deng Y; Perkins EJ; Zhang W
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19594885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.