These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 17559784)

  • 21. Recent progress in the determination of solid surface tensions from contact angles.
    Tavana H; Neumann AW
    Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple method for measuring the superhydrophobic contact angle with high accuracy.
    Hung YL; Chang YY; Wang MJ; Lin SY
    Rev Sci Instrum; 2010 Jun; 81(6):065105. PubMed ID: 20590267
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement of Interfacial Tension by Drop Retraction Analysis.
    Guido S; Villone M
    J Colloid Interface Sci; 1999 Jan; 209(1):247-250. PubMed ID: 9878160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscopic Drop Profiles and the Origins of Line Tension.
    Solomentsev Y; White LR
    J Colloid Interface Sci; 1999 Oct; 218(1):122-136. PubMed ID: 10489286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Capillary meniscus dynamometry—method for determining the surface tension of drops and bubbles with isotropic and anisotropic surface stress distributions.
    Danov KD; Stanimirova RD; Kralchevsky PA; Marinova KG; Alexandrov NA; Stoyanov SD; Blijdenstein TB; Pelan EG
    J Colloid Interface Sci; 2015 Feb; 440():168-78. PubMed ID: 25460703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Instrument and methods for surface dilatational rheology measurements.
    Russev SC; Alexandrov N; Marinova KG; Danov KD; Denkov ND; Lyutov L; Vulchev V; Bilke-Krause C
    Rev Sci Instrum; 2008 Oct; 79(10):104102. PubMed ID: 19044732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of Low Interfacial Tension with a Laser Light Scattering Technique and a Comparative Analysis with Drop Shape Methods.
    Zhang HR; Bjørkvik BJ; Moffatt BJ
    J Colloid Interface Sci; 2001 May; 237(1):11-20. PubMed ID: 11334509
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid-water and 1-butanol-water in a spinning-drop tensiometer.
    Pojman JA; Whitmore C; Turco Liveri ML; Lombardo R; Marszalek J; Parker R; Zoltowski B
    Langmuir; 2006 Mar; 22(6):2569-77. PubMed ID: 16519456
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Range of validity of drop shape techniques for surface tension measurement.
    Saad SM; Policova Z; Acosta EJ; Neumann AW
    Langmuir; 2010 Sep; 26(17):14004-13. PubMed ID: 20707340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry.
    Danov KD; Stanimirova RD; Kralchevsky PA; Marinova KG; Stoyanov SD; Blijdenstein TBJ; Cox AR; Pelan EG
    Adv Colloid Interface Sci; 2016 Jul; 233():223-239. PubMed ID: 26143156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The dynamic interaction of water with four dental impression materials during cure.
    Hosseinpour D; Berg JC
    J Prosthodont; 2009 Jun; 18(4):292-300. PubMed ID: 19210607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a new methodology to study drop shape and surface tension in electric fields.
    Bateni A; Susnar SS; Amirfazli A; Neumann AW
    Langmuir; 2004 Aug; 20(18):7589-97. PubMed ID: 15323506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CFD evaluation of drop retraction methods for the measurement of interfacial tension of surfactant-laden drops.
    Velankar S; Zhou H; Jeon HK; Macosko CW
    J Colloid Interface Sci; 2004 Apr; 272(1):172-85. PubMed ID: 14985035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue surface tension measurement by rigorous axisymmetric drop shape analysis.
    David R; Ninomiya H; Winklbauer R; Neumann AW
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):236-40. PubMed ID: 19442498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of the maximum bubble pressure technique for dynamic surface tension studies of surfactant solutions using the Sugden two-capillary method.
    Fainerman VB; Mys VD; Makievski AV; Miller R
    J Colloid Interface Sci; 2006 Dec; 304(1):222-5. PubMed ID: 16978639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The importance of aspect ratio in profile analysis tensiometry.
    Karakashev SI; Nguyen AV
    J Colloid Interface Sci; 2009 Feb; 330(2):501-4. PubMed ID: 19062037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cylindrical droplet on nanofibers: a step toward the clam-shell drop description.
    Berim GO; Ruckenstein E
    J Phys Chem B; 2005 Jun; 109(25):12515-24. PubMed ID: 16852548
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spreading of liquid drops over dry porous layers: complete wetting case.
    Starov VM; Kostvintsev SR; Sobolev VD; Velarde MG; Zhdanov SA
    J Colloid Interface Sci; 2002 Aug; 252(2):397-408. PubMed ID: 16290805
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A theoretical study on surfactant adsorption kinetics: effect of bubble shape on dynamic surface tension.
    Yang MW; Wei HH; Lin SY
    Langmuir; 2007 Dec; 23(25):12606-16. PubMed ID: 17985938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximum bubble pressure tensiometry--an analysis of experimental constraints.
    Fainerman VB; Miller R
    Adv Colloid Interface Sci; 2004 May; 108-109():287-301. PubMed ID: 15072947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.