These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17560119)

  • 41. The utility of ETD mass spectrometry in proteomic analysis.
    Mikesh LM; Ueberheide B; Chi A; Coon JJ; Syka JE; Shabanowitz J; Hunt DF
    Biochim Biophys Acta; 2006 Dec; 1764(12):1811-22. PubMed ID: 17118725
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ion activation in electron capture dissociation to distinguish between N-terminal and C-terminal product ions.
    Tsybin YO; He H; Emmett MR; Hendrickson CL; Marshall AG
    Anal Chem; 2007 Oct; 79(20):7596-602. PubMed ID: 17874851
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of structural parameters on the electron capture dissociation and collision-induced dissociation pathways of copper(II)-peptide complexes.
    Chen X; Wang Z; Li W; Wong YL; Chan TW
    Eur J Mass Spectrom (Chichester); 2015; 21(4):649-57. PubMed ID: 26353987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transition metal ions: charge carriers that mediate the electron capture dissociation pathways of peptides.
    Chen X; Fung YM; Chan WY; Wong PS; Yeung HS; Chan TW
    J Am Soc Mass Spectrom; 2011 Dec; 22(12):2232-45. PubMed ID: 21952786
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation.
    Viner RI; Zhang T; Second T; Zabrouskov V
    J Proteomics; 2009 Jul; 72(5):874-85. PubMed ID: 19245863
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Negative-ion electron capture dissociation: radical-driven fragmentation of charge-increased gaseous peptide anions.
    Yoo HJ; Wang N; Zhuang S; Song H; Håkansson K
    J Am Chem Soc; 2011 Oct; 133(42):16790-3. PubMed ID: 21942568
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simplifying fragmentation patterns of multiply charged peptides by N-terminal derivatization and electron transfer collision activated dissociation.
    Madsen JA; Brodbelt JS
    Anal Chem; 2009 May; 81(9):3645-53. PubMed ID: 19326898
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure of electron-capture dissociation fragments from charge-tagged peptides probed by tunable infrared multiple photon dissociation.
    Frison G; van der Rest G; Turecek F; Besson T; Lemaire J; Maître P; Chamot-Rooke J
    J Am Chem Soc; 2008 Nov; 130(45):14916-7. PubMed ID: 18937474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. De novo sequencing of proteolytic peptides by a combination of C-terminal derivatization and nano-electrospray/collision-induced dissociation mass spectrometry.
    Lindh I; Hjelmqvist L; Bergman T; Sjövall J; Griffiths WJ
    J Am Soc Mass Spectrom; 2000 Aug; 11(8):673-86. PubMed ID: 10937790
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mass spectrometry analysis of 2-nitrophenylhydrazine carboxy derivatized peptides.
    Zhang J; Al-Eryani R; Ball HL
    J Am Soc Mass Spectrom; 2011 Nov; 22(11):1958-67. PubMed ID: 21952763
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Strategy for the identification of sites of phosphorylation in proteins: neutral loss triggered electron capture dissociation.
    Sweet SM; Creese AJ; Cooper HJ
    Anal Chem; 2006 Nov; 78(21):7563-9. PubMed ID: 17073427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electron capture dissociation as structural probe for noncovalent gas-phase protein assemblies.
    Geels RB; van der Vies SM; Heck AJ; Heeren RM
    Anal Chem; 2006 Oct; 78(20):7191-6. PubMed ID: 17037920
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of fixed charge modifications on electron capture dissociation.
    Li X; Cournoyer JJ; Lin C; O'Connor PB
    J Am Soc Mass Spectrom; 2008 Oct; 19(10):1514-26. PubMed ID: 18657441
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein O-glycosylation analysis.
    Zauner G; Kozak RP; Gardner RA; Fernandes DL; Deelder AM; Wuhrer M
    Biol Chem; 2012 Aug; 393(8):687-708. PubMed ID: 22944673
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improvement of electron capture efficiency by resonant excitation.
    Mormann M; Peter-Katalinić J
    Rapid Commun Mass Spectrom; 2003; 17(19):2208-14. PubMed ID: 14515319
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gas-Phase Rearrangement in Lysine Phosphorylated Peptides During Electron-Transfer Dissociation Tandem Mass Spectrometry.
    Bertran-Vicente J; Schümann M; Hackenberger CP; Krause E
    Anal Chem; 2015 Jul; 87(14):6990-4. PubMed ID: 26110354
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fragmentation induced in atmospheric pressure photoionization of peptides.
    Debois D; Giuliani A; Laprévote O
    J Mass Spectrom; 2006 Dec; 41(12):1554-60. PubMed ID: 17094174
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metastable atom-activated dissociation mass spectrometry: leucine/isoleucine differentiation and ring cleavage of proline residues.
    Cook SL; Collin OL; Jackson GP
    J Mass Spectrom; 2009 Aug; 44(8):1211-23. PubMed ID: 19466707
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of CID, ETD and metastable atom-activated dissociation (MAD) of doubly and triply charged phosphorylated tau peptides.
    Cook SL; Zimmermann CM; Singer D; Fedorova M; Hoffmann R; Jackson GP
    J Mass Spectrom; 2012 Jun; 47(6):786-94. PubMed ID: 22707171
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of electron capture dissociation and collisionally activated dissociation of polycations of peptide nucleic acids.
    Olsen JV; Haselmann KF; Nielsen ML; Budnik BA; Nielsen PE; Zubarev RA
    Rapid Commun Mass Spectrom; 2001; 15(12):969-74. PubMed ID: 11400205
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.