These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17560390)

  • 21. Application of dispersive liquid-liquid microextraction and spectrophotometric detection to the rapid determination of rhodamine 6G in industrial effluents.
    Biparva P; Ranjbari E; Hadjmohammadi MR
    Anal Chim Acta; 2010 Aug; 674(2):206-10. PubMed ID: 20678631
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dispersive liquid-liquid microextraction followed by reversed phase-high performance liquid chromatography for the determination of polybrominated diphenyl ethers at trace levels in landfill leachate and environmental water samples.
    Li Y; Wei G; Hu J; Liu X; Zhao X; Wang X
    Anal Chim Acta; 2008 May; 615(1):96-103. PubMed ID: 18440368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey.
    Chen H; Chen H; Ying J; Huang J; Liao L
    Anal Chim Acta; 2009 Jan; 632(1):80-5. PubMed ID: 19100885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dispersive liquid-liquid microextraction followed by reversed phase HPLC for the determination of decabrominated diphenyl ether in natural water.
    Li Y; Hu J; Liu X; Fu L; Zhang X; Wang X
    J Sep Sci; 2008 Jul; 31(13):2371-6. PubMed ID: 18646259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dispersive liquid-liquid microextraction combined with semi-automated in-syringe back extraction as a new approach for the sample preparation of ionizable organic compounds prior to liquid chromatography.
    Melwanki MB; Fuh MR
    J Chromatogr A; 2008 Jul; 1198-1199():1-6. PubMed ID: 18513730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hollow fiber liquid phase microextraction followed by high performance liquid chromatography for determination of ultra-trace levels of Se(IV) after derivatization in urine, plasma and natural water samples.
    Saleh A; Yamini Y; Faraji M; Shariati S; Rezaee M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jun; 877(18-19):1758-64. PubMed ID: 19447688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitation of mononitrotoluenes in aquatic environment using dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection.
    Sobhi HR; Kashtiaray A; Farahani H; Javaheri M; Ganjali MR
    J Hazard Mater; 2010 Mar; 175(1-3):279-83. PubMed ID: 19880251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multivariate optimization of molecularly imprinted polymer solid-phase extraction applied to parathion determination in different water samples.
    Alizadeh T; Ganjali MR; Nourozi P; Zare M
    Anal Chim Acta; 2009 Apr; 638(2):154-61. PubMed ID: 19327454
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Extraction of trace amounts of pioglitazone as an anti-diabetic drug with hollow fiber liquid phase microextraction and determination by high-performance liquid chromatography-ultraviolet detection in biological fluids.
    Tahmasebi E; Yamini Y; Saleh A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Jul; 877(20-21):1923-9. PubMed ID: 19501030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of dispersive liquid-liquid microextraction for the selective determination of trace amounts of palladium by flame atomic absorption spectroscopy.
    Kokya TA; Farhadi K
    J Hazard Mater; 2009 Sep; 169(1-3):726-33. PubMed ID: 19423217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trace analysis of chlorobenzenes in water samples using headspace solvent microextraction and gas chromatography/electron capture detection.
    Khajeh M; Yamini Y; Hassan J
    Talanta; 2006 Jul; 69(5):1088-94. PubMed ID: 18970686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid determination of bisphenol A in drinking water using dispersive liquid-phase microextraction with in situ derivatization prior to GC-MS.
    Wang X; Diao CP; Zhao RS
    J Sep Sci; 2009 Jan; 32(1):154-9. PubMed ID: 19035382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of liquid-phase microextraction to the analysis of trihalomethanes in water.
    Tor A; Aydin ME
    Anal Chim Acta; 2006 Aug; 575(1):138-43. PubMed ID: 17723583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extraction and determination of organophosphorus pesticides in water samples by a new liquid phase microextraction-gas chromatography-flame photometric detection.
    Khalili-Zanjani MR; Yamini Y; Yazdanfar N; Shariati S
    Anal Chim Acta; 2008 Jan; 606(2):202-8. PubMed ID: 18082651
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective determination of ultra trace amounts of gold by graphite furnace atomic absorption spectrometry after dispersive liquid-liquid microextraction.
    Shamsipur M; Ramezani M
    Talanta; 2008 Mar; 75(1):294-300. PubMed ID: 18371881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry.
    Carletto JS; Luciano RM; Bedendo GC; Carasek E
    Anal Chim Acta; 2009 Apr; 638(1):45-50. PubMed ID: 19298878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein.
    Hashemi P; Raeisi F; Ghiasvand AR; Rahimi A
    Talanta; 2010 Mar; 80(5):1926-31. PubMed ID: 20152434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of dispersive liquid-liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: application to determination of copper in different water samples.
    Farajzadeh MA; Bahram M; Mehr BG; Jönsson JA
    Talanta; 2008 May; 75(3):832-40. PubMed ID: 18585154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sensitive determination of amide herbicides in environmental water samples by a combination of solid-phase extraction and dispersive liquid-liquid microextraction prior to GC-MS.
    Zhao RS; Diao CP; Chen QF; Wang X
    J Sep Sci; 2009 Apr; 32(7):1069-74. PubMed ID: 19266545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography.
    Tao Y; Liu JF; Hu XL; Li HC; Wang T; Jiang GB
    J Chromatogr A; 2009 Aug; 1216(35):6259-66. PubMed ID: 19632683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.