BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17560575)

  • 21. Spermine is not essential for survival of Arabidopsis.
    Imai A; Akiyama T; Kato T; Sato S; Tabata S; Yamamoto KT; Takahashi T
    FEBS Lett; 2004 Jan; 556(1-3):148-52. PubMed ID: 14706842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical control of xylem differentiation by thermospermine, xylemin, and auxin.
    Yoshimoto K; Takamura H; Kadota I; Motose H; Takahashi T
    Sci Rep; 2016 Feb; 6():21487. PubMed ID: 26879262
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunolocalisation of spermidine synthase in Solanum tuberosum.
    Sichhart Y; Dräger B
    Phytochemistry; 2013 Jul; 91():117-21. PubMed ID: 22445073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of transgenic mice with widespread overexpression of spermine synthase.
    Ikeguchi Y; Wang X; McCloskey DE; Coleman CS; Nelson P; Hu G; Shantz LM; Pegg AE
    Biochem J; 2004 Aug; 381(Pt 3):701-7. PubMed ID: 15104536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress.
    Naka Y; Watanabe K; Sagor GH; Niitsu M; Pillai MA; Kusano T; Takahashi Y
    Plant Physiol Biochem; 2010 Jul; 48(7):527-33. PubMed ID: 20137962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The import and function of diatom and plant frataxins in the mitochondrion of Trypanosoma brucei.
    Long S; Vávrová Z; Lukes J
    Mol Biochem Parasitol; 2008 Nov; 162(1):100-4. PubMed ID: 18765259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A maize spermine synthase 1 PEST sequence fused to the GUS reporter protein facilitates proteolytic degradation.
    Maruri-López I; Rodríguez-Kessler M; Rodríguez-Hernández AA; Becerra-Flora A; Olivares-Grajales JE; Jiménez-Bremont JF
    Plant Physiol Biochem; 2014 May; 78():80-7. PubMed ID: 24642522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants.
    Vuosku J; Karppinen K; Muilu-Mäkelä R; Kusano T; Sagor GHM; Avia K; Alakärppä E; Kestilä J; Suokas M; Nickolov K; Hamberg L; Savolainen O; Häggman H; Sarjala T
    Ann Bot; 2018 May; 121(6):1243-1256. PubMed ID: 29462244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of vitamin B2 biosynthesis: riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin.
    Fischer M; Haase I; Feicht R; Schramek N; Köhler P; Schieberle P; Bacher A
    Biol Chem; 2005 May; 386(5):417-28. PubMed ID: 15927885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Salt hypersensitivity is associated with excessive xylem development in a thermospermine-deficient mutant of Arabidopsis thaliana.
    Shinohara S; Okamoto T; Motose H; Takahashi T
    Plant J; 2019 Oct; 100(2):374-383. PubMed ID: 31257654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermospermine suppresses auxin-inducible xylem differentiation in Arabidopsis thaliana.
    Yoshimoto K; Noutoshi Y; Hayashi K; Shirasu K; Takahashi T; Motose H
    Plant Signal Behav; 2012 Aug; 7(8):937-9. PubMed ID: 22751360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters.
    Park H; Song B; Morel FM
    Environ Microbiol; 2007 Feb; 9(2):403-13. PubMed ID: 17222138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The polyamine oxidase from lycophyte Selaginella lepidophylla (SelPAO5), unlike that of angiosperms, back-converts thermospermine to norspermidine.
    Sagor GH; Inoue M; Kim DW; Kojima S; Niitsu M; Berberich T; Kusano T
    FEBS Lett; 2015 Oct; 589(20 Pt B):3071-8. PubMed ID: 26348400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Arabidopsis thaliana putative sialyltransferase resides in the Golgi apparatus but lacks the ability to transfer sialic acid.
    Daskalova SM; Pah AR; Baluch DP; Lopez LC
    Plant Biol (Stuttg); 2009 May; 11(3):284-99. PubMed ID: 19470101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oryza sativa polyamine oxidase 1 back-converts tetraamines, spermine and thermospermine, to spermidine.
    Liu T; Kim DW; Niitsu M; Berberich T; Kusano T
    Plant Cell Rep; 2014 Jan; 33(1):143-51. PubMed ID: 24105034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular cloning of plant spermidine synthases.
    Hashimoto T; Tamaki K; Suzuki K; Yamada Y
    Plant Cell Physiol; 1998 Jan; 39(1):73-9. PubMed ID: 9517003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of polyamines in plant vascular development.
    Vera-Sirera F; Minguet EG; Singh SK; Ljung K; Tuominen H; Blázquez MA; Carbonell J
    Plant Physiol Biochem; 2010 Jul; 48(7):534-9. PubMed ID: 20137964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A polyamine metabolon involving aminopropyl transferase complexes in Arabidopsis.
    Panicot M; Minguet EG; Ferrando A; Alcázar R; Blázquez MA; Carbonell J; Altabella T; Koncz C; Tiburcio AF
    Plant Cell; 2002 Oct; 14(10):2539-51. PubMed ID: 12368503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spermine synthase activity affects the content of decarboxylated S-adenosylmethionine.
    Pegg AE; Wang X; Schwartz CE; McCloskey DE
    Biochem J; 2011 Jan; 433(1):139-44. PubMed ID: 20950271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism.
    Wu H; Min J; Zeng H; McCloskey DE; Ikeguchi Y; Loppnau P; Michael AJ; Pegg AE; Plotnikov AN
    J Biol Chem; 2008 Jun; 283(23):16135-46. PubMed ID: 18367445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.