These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17560582)

  • 21. Investigation of pore diffusion hindrance of monoclonal antibody in hydrophobic interaction chromatography using confocal laser scanning microscopy.
    Susanto A; Herrmann T; von Lieres E; Hubbuch J
    J Chromatogr A; 2007 May; 1149(2):178-88. PubMed ID: 17418853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent.
    Zhang S; Sun Y
    Biotechnol Prog; 2004; 20(1):207-14. PubMed ID: 14763844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesoporous calcium silicate for controlled release of bovine serum albumin protein.
    Xue W; Bandyopadhyay A; Bose S
    Acta Biomater; 2009 Jun; 5(5):1686-96. PubMed ID: 19249262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of diffusion coefficients of proteins in stationary phases by frontal chromatography.
    Kempe H; Persson P; Axelsson A; Nilsson B; Zacchi G
    Biotechnol Bioeng; 2006 Mar; 93(4):656-64. PubMed ID: 16372360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling protein-particle adsorption by surface tailoring colloidal alumina particles with sulfonate groups.
    Meder F; Brandes C; Treccani L; Rezwan K
    Acta Biomater; 2013 Mar; 9(3):5780-7. PubMed ID: 23164944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein adsorption-dependent electro-kinetic pore flow: modeling of ion-exchange electrochromatography with an oscillatory transverse electric field.
    Yuan W; Zhao YP; Zhang Q; Sun Y
    Electrophoresis; 2010 Mar; 31(5):944-51. PubMed ID: 20191556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiscale modeling of protein uptake patterns in chromatographic particles.
    Lenhoff AM
    Langmuir; 2008 Jun; 24(12):5991-5. PubMed ID: 18481880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A prediction method for the isoelectric point of binary protein mixtures of bovine serum albumin and lysozyme adsorbed on colloidal titania and alumina particles.
    Rezwan K; Meier LP; Gauckler LJ
    Langmuir; 2005 Apr; 21(8):3493-7. PubMed ID: 15807593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasensitive protein concentration measurement based on particle adsorption and fluorescence quenching.
    Pihlasalo S; Kirjavainen J; Hänninen P; Härmä H
    Anal Chem; 2009 Jun; 81(12):4995-5000. PubMed ID: 19453161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents.
    Dismer F; Petzold M; Hubbuch J
    J Chromatogr A; 2008 Jun; 1194(1):11-21. PubMed ID: 18234205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developing a chromatographic column model for bovine serum albumin on strong anion-exchanger Source30Q using data from confocal laser scanning microscopy.
    Susanto A; Wekenborg K; Hubbuch J; Schmidt-Traub H
    J Chromatogr A; 2006 Dec; 1137(1):63-75. PubMed ID: 17055517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tris(hydroxymethyl)aminomethane-functionalized agarose particles: parameters affecting the binding of bovine serum albumin.
    Zhang B; Wang Y; Gao M; Gu M; Wang C
    J Sep Sci; 2012 Jun; 35(12):1406-10. PubMed ID: 22740250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic analysis on the effects of salt concentration and pH on protein adsorption onto a mixed-mode adsorbent with cation ligand.
    Gao D; Lin DQ; Yao SJ
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Nov; 859(1):16-23. PubMed ID: 17913599
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface-functionalized electrospun carbon nanofiber mats as an innovative type of protein adsorption/purification medium with high capacity and high throughput.
    Schneiderman S; Zhang L; Fong H; Menkhaus TJ
    J Chromatogr A; 2011 Dec; 1218(50):8989-95. PubMed ID: 22047820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nondiffusive mechanisms enhance protein uptake rates in ion exchange particles.
    Dziennik SR; Belcher EB; Barker GA; DeBergalis MJ; Fernandez SE; Lenhoff AM
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):420-5. PubMed ID: 12522150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporating water-release and lateral protein interactions in modeling equilibrium adsorption for ion-exchange chromatography.
    Thrash ME; Pinto NG
    J Chromatogr A; 2006 Sep; 1126(1-2):304-10. PubMed ID: 16846610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantifying adsorbed protein on surfaces using confocal fluorescence microscopy.
    Togashi DM; Ryder AG; Heiss G
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):219-29. PubMed ID: 19423302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the sample-solvent on protein retention, mass transfer and unfolding kinetics in hydrophobic interaction chromatography.
    Muca R; Marek W; Piatkowski W; Antos D
    J Chromatogr A; 2010 Apr; 1217(17):2812-20. PubMed ID: 20236645
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of protein capacity of nanocation exchanger particles as filling material for functional magnetic beads for bioseparation purposes.
    Hickstein B; Peuker UA
    Biotechnol Prog; 2008; 24(2):409-16. PubMed ID: 18324824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Profiling protein-surface interactions of multicomponent suspensions via flow cytometry.
    Kozak D; Chen A; Trau M
    Langmuir; 2008 Feb; 24(4):1204-11. PubMed ID: 18067330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.