These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
638 related articles for article (PubMed ID: 17560602)
1. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase. Jungblut SP; Klostermeier D J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602 [TBL] [Abstract][Full Text] [Related]
2. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain. del Toro Duany Y; Klostermeier D; Rudolph MG Biochemistry; 2011 Jul; 50(26):5816-23. PubMed ID: 21627332 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide-driven conformational changes in the reverse gyrase helicase-like domain couple the nucleotide cycle to DNA processing. del Toro Duany Y; Klostermeier D Phys Chem Chem Phys; 2011 Jun; 13(21):10009-19. PubMed ID: 21350762 [TBL] [Abstract][Full Text] [Related]
4. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase. Rodríguez AC Biochemistry; 2003 May; 42(20):5993-6004. PubMed ID: 12755601 [TBL] [Abstract][Full Text] [Related]
5. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction. Ganguly A; del Toro Duany Y; Klostermeier D J Mol Biol; 2013 Jan; 425(1):32-40. PubMed ID: 23123378 [TBL] [Abstract][Full Text] [Related]
6. A β-hairpin is a Minimal Latch that Supports Positive Supercoiling by Reverse Gyrase. Collin F; Weisslocker-Schaetzel M; Klostermeier D J Mol Biol; 2020 Jul; 432(16):4762-4771. PubMed ID: 32592697 [TBL] [Abstract][Full Text] [Related]
7. The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling. Ganguly A; Del Toro Duany Y; Rudolph MG; Klostermeier D Nucleic Acids Res; 2011 Mar; 39(5):1789-800. PubMed ID: 21051354 [TBL] [Abstract][Full Text] [Related]
8. Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis. Del Toro Duany Y; Ganguly A; Klostermeier D Biol Chem; 2014 Jan; 395(1):83-93. PubMed ID: 23959663 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of the helicase-like domain of Thermotoga maritima reverse gyrase. de la Tour CB; Amrani L; Cossard R; Neuman KC; Serre MC; Duguet M J Biol Chem; 2008 Oct; 283(41):27395-27402. PubMed ID: 18614530 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling. Rudolph MG; del Toro Duany Y; Jungblut SP; Ganguly A; Klostermeier D Nucleic Acids Res; 2013 Jan; 41(2):1058-70. PubMed ID: 23209025 [TBL] [Abstract][Full Text] [Related]
11. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI. Janscak P; Bickle TA J Mol Biol; 2000 Jan; 295(4):1089-99. PubMed ID: 10656812 [TBL] [Abstract][Full Text] [Related]
12. The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain. del Toro Duany Y; Jungblut SP; Schmidt AS; Klostermeier D Nucleic Acids Res; 2008 Oct; 36(18):5882-95. PubMed ID: 18796525 [TBL] [Abstract][Full Text] [Related]
13. Reverse gyrase: an unusual DNA manipulator of hyperthermophilic organisms. D'Amaro A; Rossi M; Ciaramella M Ital J Biochem; 2007 Jun; 56(2):103-9. PubMed ID: 17722650 [TBL] [Abstract][Full Text] [Related]
14. Nucleotide- and stoichiometry-dependent DNA supercoiling by reverse gyrase. Hsieh TS; Capp C J Biol Chem; 2005 May; 280(21):20467-75. PubMed ID: 15788400 [TBL] [Abstract][Full Text] [Related]
15. Exploiting nucleotide thiophosphates to probe mechanistic aspects of Escherichia coli DNA gyrase. Cullis PM; Maxwell A; Weiner DP Biochemistry; 1997 May; 36(20):6059-68. PubMed ID: 9166776 [TBL] [Abstract][Full Text] [Related]
16. Locking the ATP-operated clamp of DNA gyrase: probing the mechanism of strand passage. Williams NL; Howells AJ; Maxwell A J Mol Biol; 2001 Mar; 306(5):969-84. PubMed ID: 11237612 [TBL] [Abstract][Full Text] [Related]
17. Binding and Hydrolysis of a Single ATP Is Sufficient for N-Gate Closure and DNA Supercoiling by Gyrase. Hartmann S; Gubaev A; Klostermeier D J Mol Biol; 2017 Nov; 429(23):3717-3729. PubMed ID: 29032205 [TBL] [Abstract][Full Text] [Related]
18. Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling. Déclais AC; Marsault J; Confalonieri F; de La Tour CB; Duguet M J Biol Chem; 2000 Jun; 275(26):19498-504. PubMed ID: 10748189 [TBL] [Abstract][Full Text] [Related]
19. Functional interaction of reverse gyrase with single-strand binding protein of the archaeon Sulfolobus. Napoli A; Valenti A; Salerno V; Nadal M; Garnier F; Rossi M; Ciaramella M Nucleic Acids Res; 2005; 33(2):564-76. PubMed ID: 15673717 [TBL] [Abstract][Full Text] [Related]
20. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain. Mhaindarkar VP; Rasche R; Kümmel D; Rudolph MG; Klostermeier D Acta Crystallogr D Struct Biol; 2023 Jun; 79(Pt 6):498-507. PubMed ID: 37204816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]