These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 17560628)

  • 1. Accumulation and partitioning of heavy metals in mangroves: a synthesis of field-based studies.
    MacFarlane GR; Koller CE; Blomberg SP
    Chemosphere; 2007 Nov; 69(9):1454-64. PubMed ID: 17560628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China.
    Qiu YW; Yu KF; Zhang G; Wang WX
    J Hazard Mater; 2011 Jun; 190(1-3):631-8. PubMed ID: 21501926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India.
    Agoramoorthy G; Chen FA; Hsu MJ
    Environ Pollut; 2008 Sep; 155(2):320-6. PubMed ID: 18086510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace metal partitioning in Thalassia testudinum and sediments in the Lower Laguna Madre, Texas.
    Whelan T; Espinoza J; Villarreal X; Cottagoma M
    Environ Int; 2005 Jan; 31(1):15-24. PubMed ID: 15607775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans.
    Fritioff A; Greger M
    Chemosphere; 2006 Apr; 63(2):220-7. PubMed ID: 16213560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for preferential depths of metal retention in roots of salt marsh plants.
    Caetano M; Vale C; Cesário R; Fonseca N
    Sci Total Environ; 2008 Feb; 390(2-3):466-74. PubMed ID: 18036637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.
    Reboreda R; Caçador I
    Environ Pollut; 2007 Mar; 146(1):147-54. PubMed ID: 16996176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima.
    Reboreda R; Caçador I
    Chemosphere; 2007 Nov; 69(10):1655-61. PubMed ID: 17599388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of heavy metals during the development and decomposition of leaves of Avicennia marina and Kandelia obovata in a subtropical mangrove swamp.
    Lang T; Tam NF; Hussain M; Ke X; Wei J; Fu Y; Li M; Huang X; Huang S; Xiong Z; Wu K; Li F; Chen Z; Hu Z; Gao C; Yang Q; Zhou H
    Sci Total Environ; 2023 Jan; 855():158700. PubMed ID: 36113807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of a salt marsh plant (Halimione portulacoides) on the concentrations and potential mobility of metals in sediments.
    Almeida CM; Mucha AP; Bordalo AA; Vasconcelos MT
    Sci Total Environ; 2008 Sep; 403(1-3):188-95. PubMed ID: 18606437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.
    Chehregani A; Noori M; Yazdi HL
    Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of sediment quality in Avicennia marina-dominated embayments of Sydney Estuary: the potential use of pneumatophores (aerial roots) as a bio-indicator of trace metal contamination.
    Nath B; Birch G; Chaudhuri P
    Sci Total Environ; 2014 Feb; 472():1010-22. PubMed ID: 24345861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration.
    Weis JS; Weis P
    Environ Int; 2004 Jul; 30(5):685-700. PubMed ID: 15051245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh.
    MacFarlane GR; Burchett MD
    Mar Environ Res; 2002; 54(1):65-84. PubMed ID: 12148945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bulk and bioavailable heavy metals (Cd, Cu, Pb, and Zn) in surface sediments from Mazatlán Harbor (SE Gulf of California).
    Jara-Marini ME; Soto-Jiménez MF; Páez-Osuna F
    Bull Environ Contam Toxicol; 2008 Feb; 80(2):150-3. PubMed ID: 18196190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heavy metal contamination in sediments and mangroves from the coast of Red Sea: Avicennia marina as potential metal bioaccumulator.
    Usman AR; Alkredaa RS; Al-Wabel MI
    Ecotoxicol Environ Saf; 2013 Nov; 97():263-70. PubMed ID: 24011858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal).
    Duarte B; Caetano M; Almeida PR; Vale C; Caçador I
    Environ Pollut; 2010 May; 158(5):1661-8. PubMed ID: 20036450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments.
    McLean CM; Koller CE; Rodger JC; MacFarlane GR
    Sci Total Environ; 2009 May; 407(11):3588-96. PubMed ID: 19232676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.