These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 17560745)

  • 1. Outer membrane permeability for nonpolar antimicrobial agents underlies extreme susceptibility of Pasteurella multocida to the hydrophobic biocide triclosan.
    Ellison ML; Champlin FR
    Vet Microbiol; 2007 Oct; 124(3-4):310-8. PubMed ID: 17560745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility of compound 48/80-sensitized Pseudomonas aeruginosa to the hydrophobic biocide triclosan.
    Ellison ML; Roberts AL; Champlin FR
    FEMS Microbiol Lett; 2007 Apr; 269(2):295-300. PubMed ID: 17263842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of outer membrane permeabilisation on intrinsic resistance to low triclosan levels in Pseudomonas aeruginosa.
    Champlin FR; Ellison ML; Bullard JW; Conrad RS
    Int J Antimicrob Agents; 2005 Aug; 26(2):159-164. PubMed ID: 16040235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of methylation on the antibacterial properties of triclosan in Pasteurella multocida and Pseudomonas aeruginosa variant strains.
    Clayborn AB; Toofan SN; Champlin FR
    J Hosp Infect; 2011 Feb; 77(2):129-33. PubMed ID: 21194793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triclosan-tolerant bacteria: changes in susceptibility to antibiotics.
    Cottell A; Denyer SP; Hanlon GW; Ochs D; Maillard JY
    J Hosp Infect; 2009 May; 72(1):71-6. PubMed ID: 19246121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of polymyxin B nonapeptide on daptomycin permeability and cell surface properties in Pseudomonas aeruginosa, Escherichia coli, and Pasteurella multocida.
    Morris CM; George A; Wilson WW; Champlin FR
    J Antibiot (Tokyo); 1995 Jan; 48(1):67-72. PubMed ID: 7868392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan.
    Braoudaki M; Hilton AC
    Int J Antimicrob Agents; 2005 Jan; 25(1):31-7. PubMed ID: 15620823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive acquisition of novobiocin resistance in Pasteurella multocida strains of avian origin.
    Arif M; Champlin FR
    Vet Res Commun; 1998 Nov; 22(7):445-55. PubMed ID: 9868759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triclosan inhibition of fatty acid synthesis and its effect on growth of Escherichia coli and Pseudomonas aeruginosa.
    Escalada MG; Harwood JL; Maillard JY; Ochs D
    J Antimicrob Chemother; 2005 Jun; 55(6):879-82. PubMed ID: 15860550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae.
    Chatterjee A; Chaudhuri S; Saha G; Gupta S; Chowdhury R
    J Bacteriol; 2004 Oct; 186(20):6809-14. PubMed ID: 15466033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimicrobial mechanisms of ortho-phthalaldehyde action.
    Simões M; Simões LC; Cleto S; Machado I; Pereira MO; Vieira MJ
    J Basic Microbiol; 2007 Jun; 47(3):230-42. PubMed ID: 17518416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibility to hydrophobic molecules and phospholipid composition in Pasteurella multocida and Actinobacillus lignieresii.
    Hart ME; Champlin FR
    Antimicrob Agents Chemother; 1988 Sep; 32(9):1354-9. PubMed ID: 3195997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whither triclosan?
    Russell AD
    J Antimicrob Chemother; 2004 May; 53(5):693-5. PubMed ID: 15073159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promethazine renders Escherichia coli susceptible to penicillin G: real-time measurement of bacterial susceptibility by fluoro-luminometry.
    Lehtinen J; Lilius EM
    Int J Antimicrob Agents; 2007 Jul; 30(1):44-51. PubMed ID: 17475447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging.
    Xu XH; Brownlow WJ; Kyriacou SV; Wan Q; Viola JJ
    Biochemistry; 2004 Aug; 43(32):10400-13. PubMed ID: 15301539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection for high-level resistance by chronic triclosan exposure is not universal.
    McBain AJ; Ledder RG; Sreenivasan P; Gilbert P
    J Antimicrob Chemother; 2004 May; 53(5):772-7. PubMed ID: 15117935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compendium of antibiotic-induced transcription profiles reveals broad regulation of Pasteurella multocida virulence genes.
    Melnikow E; Schoenfeld C; Spehr V; Warrass R; Gunkel N; Duszenko M; Selzer PM; Ullrich HJ
    Vet Microbiol; 2008 Oct; 131(3-4):277-92. PubMed ID: 18501535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of changes in antimicrobial susceptibility patterns of Pasteurella multocida subsp multocida isolates from pigs in Spain in 1987-1988 and 2003-2004.
    Lizarazo YA; Ferri EF; de la Fuente AJ; Martín CB
    Am J Vet Res; 2006 Apr; 67(4):663-8. PubMed ID: 16579760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triclosan-bacteria interactions: single or multiple target sites?
    Escalada MG; Russell AD; Maillard JY; Ochs D
    Lett Appl Microbiol; 2005; 41(6):476-81. PubMed ID: 16305673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane.
    Imamura Y; Higashiyama Y; Tomono K; Izumikawa K; Yanagihara K; Ohno H; Miyazaki Y; Hirakata Y; Mizuta Y; Kadota J; Iglewski BH; Kohno S
    Antimicrob Agents Chemother; 2005 Apr; 49(4):1377-80. PubMed ID: 15793115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.