BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 17560793)

  • 1. The oxidation/reduction kinetics of the plastoquinone pool controls the appearance of the I-peak in the O-J-I-P chlorophyll fluorescence rise: effects of various electron acceptors.
    Joly D; Carpentier R
    J Photochem Photobiol B; 2007 Jul; 88(1):43-50. PubMed ID: 17560793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of N,N,N',N'-tetramethyl-p-phenylenediamine with photosystem II as revealed by thermoluminescence: reduction of the higher oxidation states of the Mn cluster and displacement of plastoquinone from the Q(B) niche.
    Gauthier A; Govindachary S; Harnois J; Carpentier R
    Biochim Biophys Acta; 2006 Nov; 1757(11):1547-56. PubMed ID: 17064657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N,N,N',N'-tetramethyl-p-phenylenediamine initiates the appearance of a well-resolved I peak in the kinetics of chlorophyll fluorescence rise in isolated thylakoids.
    Bukhov NG; Govindachary S; Egorova EA; Joly D; Carpentier R
    Biochim Biophys Acta; 2003 Dec; 1607(2-3):91-6. PubMed ID: 14670599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analyses of the OJIP chlorophyll fluorescence rise in thylakoid membranes.
    Joly D; Bigras C; Harnois J; Govindachary S; Carpentier R
    Photosynth Res; 2005 Jun; 84(1-3):107-12. PubMed ID: 16049762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids.
    Bukhov NG; Egorova EA; Govindachary S; Carpentier R
    Biochim Biophys Acta; 2004 Jul; 1657(2-3):121-30. PubMed ID: 15238269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool.
    Ohad I; Dal Bosco C; Herrmann RG; Meurer J
    Biochemistry; 2004 Mar; 43(8):2297-308. PubMed ID: 14979726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-photochemical reduction of thylakoid photosynthetic redox carriers in vitro: relevance to cyclic electron flow around photosystem I?
    Fisher N; Kramer DM
    Biochim Biophys Acta; 2014 Dec; 1837(12):1944-1954. PubMed ID: 25251244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the photosynthetic electron transport by PQ diffusion microdomains in thylakoids of higher plants.
    Kirchhoff H; Horstmann S; Weis E
    Biochim Biophys Acta; 2000 Jul; 1459(1):148-68. PubMed ID: 10924908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of the plastoquinone pool in chloroplast thylakoid membranes by superoxide anion radicals.
    Borisova-Mubarakshina MM; Naydov IA; Ivanov BN
    FEBS Lett; 2018 Oct; 592(19):3221-3228. PubMed ID: 30179252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of exogenous quinones with membranes of higher plant chloroplasts: modulation of quinone capacities as photochemical and non-photochemical quenchers of energy in Photosystem II during light-dark transitions.
    Bukhov NG; Sridharan G; Egorova EA; Carpentier R
    Biochim Biophys Acta; 2003 Jun; 1604(2):115-23. PubMed ID: 12765768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient.
    Tóth SZ; Schansker G; Strasser RJ
    Photosynth Res; 2007; 93(1-3):193-203. PubMed ID: 17487568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sigmoidal reduction kinetics of the photosystem II acceptor side in intact photosynthetic materials during fluorescence induction.
    Joly D; Carpentier R
    Photochem Photobiol Sci; 2009 Feb; 8(2):167-73. PubMed ID: 19247508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thylakoid membrane model of the Chl a fluorescence transient and P700 induction kinetics in plant leaves.
    Belyaeva NE; Bulychev AA; Riznichenko GY; Rubin AB
    Photosynth Res; 2016 Dec; 130(1-3):491-515. PubMed ID: 27368165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic electron flow regulates transcription of the psaB gene in pea (Pisum sativum L.) chloroplasts through the redox state of the plastoquinone pool.
    Tullberg A; Alexciev K; Pfannschmidt T; Allen JF
    Plant Cell Physiol; 2000 Sep; 41(9):1045-54. PubMed ID: 11100777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobiosis induced state transition: a non photochemical reduction of PQ pool mediated by NDH in Arabidopsis thaliana.
    Nellaepalli S; Kodru S; Tirupathi M; Subramanyam R
    PLoS One; 2012; 7(11):e49839. PubMed ID: 23185453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of energy dissipation in photosystem I by the redox state of the plastoquinone pool.
    Joly D; Carpentier R
    Biochemistry; 2007 May; 46(18):5534-41. PubMed ID: 17432831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model.
    Belyaeva NE; Bulychev AA; Riznichenko GY; Rubin AB
    Photosynth Res; 2019 Apr; 140(1):1-19. PubMed ID: 30810971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of the plastoquinone pool oxidation following illumination Oxygen incorporation into photosynthetic electron transport chain.
    Ivanov B; Mubarakshina M; Khorobrykh S
    FEBS Lett; 2007 Apr; 581(7):1342-6. PubMed ID: 17349633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction.
    Laisk A; Oja V
    Photosynth Res; 2018 Apr; 136(1):63-82. PubMed ID: 28936722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise.
    Stirbet A; Govindjee
    Photosynth Res; 2012 Sep; 113(1-3):15-61. PubMed ID: 22810945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.