BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17561252)

  • 1. L-type calcium channels in adrenal chromaffin cells: role in pace-making and secretion.
    Marcantoni A; Baldelli P; Hernandez-Guijo JM; Comunanza V; Carabelli V; Carbone E
    Cell Calcium; 2007; 42(4-5):397-408. PubMed ID: 17561252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An activity-dependent increased role for L-type calcium channels in exocytosis is regulated by adrenergic signaling in chromaffin cells.
    Polo-Parada L; Chan SA; Smith C
    Neuroscience; 2006 Dec; 143(2):445-59. PubMed ID: 16962713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices.
    Chan SA; Polo-Parada L; Smith C
    Arch Biochem Biophys; 2005 Mar; 435(1):65-73. PubMed ID: 15680908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium channels in chromaffin cells: focus on L and T types.
    Marcantoni A; Carabelli V; Comunanza V; Hoddah H; Carbone E
    Acta Physiol (Oxf); 2008 Feb; 192(2):233-46. PubMed ID: 18021322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG; García-De-Diego AM; Gandía L; Borges R; García-Sancho J
    Physiol Rev; 2006 Oct; 86(4):1093-131. PubMed ID: 17015485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linopirdine modulates calcium signaling and stimulus-secretion coupling in adrenal chromaffin cells by targeting M-type K+ channels and nicotinic acetylcholine receptors.
    Dzhura EV; He W; Currie KP
    J Pharmacol Exp Ther; 2006 Mar; 316(3):1165-74. PubMed ID: 16280412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis.
    Mahapatra S; Calorio C; Vandael DH; Marcantoni A; Carabelli V; Carbone E
    Cell Calcium; 2012; 51(3-4):321-30. PubMed ID: 22317919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells.
    Alvarez YD; Ibañez LI; Uchitel OD; Marengo FD
    Cell Calcium; 2008 Feb; 43(2):155-64. PubMed ID: 17561253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis?
    Comunanza V; Marcantoni A; Vandael DH; Mahapatra S; Gavello D; Carabelli V; Carbone E
    Channels (Austin); 2010; 4(6):440-6. PubMed ID: 21084859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cav1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells.
    Vandael DH; Marcantoni A; Carbone E
    Curr Mol Pharmacol; 2015; 8(2):149-61. PubMed ID: 25966692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence.
    Carabelli V; Marcantoni A; Comunanza V; Carbone E
    Eur Biophys J; 2007 Sep; 36(7):753-62. PubMed ID: 17340096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells.
    Alvarez YD; Marengo FD
    J Neurochem; 2011 Jan; 116(2):155-63. PubMed ID: 21073467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired chromaffin cell excitability and exocytosis in autistic Timothy syndrome TS2-neo mouse rescued by L-type calcium channel blockers.
    Calorio C; Gavello D; Guarina L; Salio C; Sassoè-Pognetto M; Riganti C; Bianchi FT; Hofer NT; Tuluc P; Obermair GJ; Defilippi P; Balzac F; Turco E; Bett GC; Rasmusson RL; Carbone E
    J Physiol; 2019 Mar; 597(6):1705-1733. PubMed ID: 30629744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The L-type voltage-gated Ca2+ channel is the Ca2+ sensor protein of stimulus-secretion coupling in pancreatic beta cells.
    Trus M; Corkey RF; Nesher R; Richard AM; Deeney JT; Corkey BE; Atlas D
    Biochemistry; 2007 Dec; 46(50):14461-7. PubMed ID: 18027971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetylcholine-induced potential fluctuations and underlying currents in rat adrenal chromaffin cells.
    Kidokoro Y
    Fed Proc; 1984 Jun; 43(9):2364-7. PubMed ID: 6327395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cav1.3 and Cav1.2 channels of adrenal chromaffin cells: emerging views on cAMP/cGMP-mediated phosphorylation and role in pacemaking.
    Vandael DH; Mahapatra S; Calorio C; Marcantoni A; Carbone E
    Biochim Biophys Acta; 2013 Jul; 1828(7):1608-18. PubMed ID: 23159773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cav1.2 calcium channels modulate the spiking pattern of hippocampal pyramidal cells.
    Lacinova L; Moosmang S; Langwieser N; Hofmann F; Kleppisch T
    Life Sci; 2008 Jan; 82(1-2):41-9. PubMed ID: 18045623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells.
    Vandael DH; Ottaviani MM; Legros C; Lefort C; Guérineau NC; Allio A; Carabelli V; Carbone E
    J Physiol; 2015 Feb; 593(4):905-27. PubMed ID: 25620605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Key role of the nicotinic receptor in neurotransmitter exocytosis in human chromaffin cells.
    Pérez-Alvarez A; Albillos A
    J Neurochem; 2007 Dec; 103(6):2281-90. PubMed ID: 17883397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opposite action of beta1- and beta2-adrenergic receptors on Ca(V)1 L-channel current in rat adrenal chromaffin cells.
    Cesetti T; Hernández-Guijo JM; Baldelli P; Carabelli V; Carbone E
    J Neurosci; 2003 Jan; 23(1):73-83. PubMed ID: 12514203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.