These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
589 related articles for article (PubMed ID: 17561344)
41. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Huang H; Xiao X; Yan B; Yang L J Hazard Mater; 2010 Mar; 175(1-3):247-52. PubMed ID: 19875231 [TBL] [Abstract][Full Text] [Related]
43. Removal of zirconium from aqueous solution by modified clinoptilolite. Faghihian H; Kabiri-Tadi M J Hazard Mater; 2010 Jun; 178(1-3):66-73. PubMed ID: 20185237 [TBL] [Abstract][Full Text] [Related]
44. The use of testa of groundnut shell (Arachis hypogea) for the adsorption of Ni(II) from the aqueous system. Ajmal M; Rao RA; Ahmad J; Ahmad R J Environ Sci Eng; 2006 Jul; 48(3):221-4. PubMed ID: 17915788 [TBL] [Abstract][Full Text] [Related]
45. Adsorption of Zn2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. Nibou D; Mekatel H; Amokrane S; Barkat M; Trari M J Hazard Mater; 2010 Jan; 173(1-3):637-46. PubMed ID: 19773115 [TBL] [Abstract][Full Text] [Related]
46. Removal of Cd(II) from aqueous solutions using clarified sludge. Naiya TK; Bhattacharya AK; Das SK J Colloid Interface Sci; 2008 Sep; 325(1):48-56. PubMed ID: 18571663 [TBL] [Abstract][Full Text] [Related]
47. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. Meena AK; Kadirvelu K; Mishraa GK; Rajagopal C; Nagar PN J Hazard Mater; 2008 Feb; 150(3):619-25. PubMed ID: 17574736 [TBL] [Abstract][Full Text] [Related]
48. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. Mittal A; Kurup L; Mittal J J Hazard Mater; 2007 Jul; 146(1-2):243-8. PubMed ID: 17222509 [TBL] [Abstract][Full Text] [Related]
49. Azadirachta indica leaf powder as a biosorbent for Ni(II) in aqueous medium. Bhattacharyya KG; Sarma J; Sarma A J Hazard Mater; 2009 Jun; 165(1-3):271-8. PubMed ID: 19008041 [TBL] [Abstract][Full Text] [Related]
50. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. Tan IA; Ahmad AL; Hameed BH J Hazard Mater; 2008 Jun; 154(1-3):337-46. PubMed ID: 18035483 [TBL] [Abstract][Full Text] [Related]
51. Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality. Saltali K; Sari A; Aydin M J Hazard Mater; 2007 Mar; 141(1):258-63. PubMed ID: 16930832 [TBL] [Abstract][Full Text] [Related]
52. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. Zhou L; Liu J; Liu Z J Hazard Mater; 2009 Dec; 172(1):439-46. PubMed ID: 19646814 [TBL] [Abstract][Full Text] [Related]
53. Removal of cadmium from aqueous solutions using clinoptilolite: influence of pretreatment and regeneration. Gedik K; Imamoglu I J Hazard Mater; 2008 Jun; 155(1-2):385-92. PubMed ID: 18262351 [TBL] [Abstract][Full Text] [Related]
54. Determination of kinetic and equilibrium parameters of the batch adsorption of Ni(II) from aqueous solutions by Na-mordenite. Wang XS; Huang J; Hu HQ; Wang J; Qin Y J Hazard Mater; 2007 Apr; 142(1-2):468-76. PubMed ID: 17010513 [TBL] [Abstract][Full Text] [Related]
55. Adsorption equilibrium and kinetics of polyvinyl alcohol from aqueous solution on powdered activated carbon. Behera SK; Kim JH; Guo X; Park HS J Hazard Mater; 2008 May; 153(3):1207-14. PubMed ID: 18022762 [TBL] [Abstract][Full Text] [Related]
56. A new adsorbent for boron removal from aqueous solutions. Kluczka J; Korolewicz T; Zołotajkin M; Simka W; Raczek M Environ Technol; 2013; 34(9-12):1369-76. PubMed ID: 24191469 [TBL] [Abstract][Full Text] [Related]
57. Experimental assessment of adsorption of Cu2+ and Ni2+ from aqueous solution by oyster shell powder. Hsu TC J Hazard Mater; 2009 Nov; 171(1-3):995-1000. PubMed ID: 19615814 [TBL] [Abstract][Full Text] [Related]
58. Lead removal in fixed-bed columns by zeolite and sepiolite. Turan M; Mart U; Yüksel B; Celik MS Chemosphere; 2005 Sep; 60(10):1487-92. PubMed ID: 16054918 [TBL] [Abstract][Full Text] [Related]
59. Use of an iron-overexchanged clinoptilolite for the removal of Cu2+ ions from heavily contaminated drinking water samples. Doula MK; Dimirkou A J Hazard Mater; 2008 Mar; 151(2-3):738-45. PubMed ID: 17658683 [TBL] [Abstract][Full Text] [Related]
60. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. Ijagbemi CO; Baek MH; Kim DS J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]