These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 17562040)

  • 1. Effect of electron mediators on current generation and fermentation in a microbial fuel cell.
    Sund CJ; McMasters S; Crittenden SR; Harrell LE; Sumner JJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):561-8. PubMed ID: 17562040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells.
    Ren Z; Steinberg LM; Regan JM
    Water Sci Technol; 2008; 58(3):617-22. PubMed ID: 18725730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of flavin electron shuttles in microbial fuel cells current production.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of different substrates and humic acid on power generation in microbial fuel cell operation.
    Thygesen A; Poulsen FW; Min B; Angelidaki I; Thomsen AB
    Bioresour Technol; 2009 Feb; 100(3):1186-91. PubMed ID: 18815026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells.
    Liu M; Yuan Y; Zhang LX; Zhuang L; Zhou SG; Ni JR
    Bioresour Technol; 2010 Mar; 101(6):1807-11. PubMed ID: 19879132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Challenges in microbial fuel cell development and operation.
    Kim BH; Chang IS; Gadd GM
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):485-94. PubMed ID: 17593364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells.
    Feng C; Ma L; Li F; Mai H; Lang X; Fan S
    Biosens Bioelectron; 2010 Feb; 25(6):1516-20. PubMed ID: 19889528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron shuttles in biotechnology.
    Watanabe K; Manefield M; Lee M; Kouzuma A
    Curr Opin Biotechnol; 2009 Dec; 20(6):633-41. PubMed ID: 19833503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12.
    Hong YG; Guo J; Xu ZC; Xu MY; Sun GP
    J Microbiol Biotechnol; 2007 Mar; 17(3):428-37. PubMed ID: 18050946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells.
    Ramasamy RP; Gadhamshetty V; Nadeau LJ; Johnson GR
    Biotechnol Bioeng; 2009 Dec; 104(5):882-91. PubMed ID: 19585525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells.
    Huang L; Angelidaki I
    Biotechnol Bioeng; 2008 Jun; 100(3):413-22. PubMed ID: 18306421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaining electricity from in situ oxidation of hydrogen produced by fermentative cellulose degradation.
    Niessen J; Schröder U; Harnisch F; Scholz F
    Lett Appl Microbiol; 2005; 41(3):286-90. PubMed ID: 16108922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell.
    Finch AS; Mackie TD; Sund CJ; Sumner JJ
    Bioresour Technol; 2011 Jan; 102(1):312-5. PubMed ID: 20655198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell.
    Sun J; Li W; Li Y; Hu Y; Zhang Y
    Bioresour Technol; 2013 Aug; 142():407-14. PubMed ID: 23748088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency.
    Schröder U
    Phys Chem Chem Phys; 2007 Jun; 9(21):2619-29. PubMed ID: 17627307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial fuel cells: novel biotechnology for energy generation.
    Rabaey K; Verstraete W
    Trends Biotechnol; 2005 Jun; 23(6):291-8. PubMed ID: 15922081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding interactive characteristics of bioelectricity generation and reductive decolorization using Proteus hauseri.
    Chen BY; Wang YM; Ng IS
    Bioresour Technol; 2011 Jan; 102(2):1159-65. PubMed ID: 20932743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell.
    Wang A; Sun D; Cao G; Wang H; Ren N; Wu WM; Logan BE
    Bioresour Technol; 2011 Mar; 102(5):4137-43. PubMed ID: 21216594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species.
    Ren Z; Ward TE; Logan BE; Regan JM
    J Appl Microbiol; 2007 Dec; 103(6):2258-66. PubMed ID: 18045409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.