BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 17562351)

  • 21. Pesticide runoff model (PeRM): a case study for the Kintore Creek Watershed, Ontario, Canada.
    Li YR; Li YF; Struger J; Chen B; Huang GH
    J Environ Sci Health B; 2003 May; 38(3):257-73. PubMed ID: 12716044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing pharmaceutical and pesticide loads into a small Mediterranean river.
    Comoretto L; Chiron S
    Sci Total Environ; 2005 Oct; 349(1-3):201-10. PubMed ID: 16198681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organochlorine pesticides and polychlorinated biphenyls in riverine runoff of the Pearl River Delta, China: assessment of mass loading, input source and environmental fate.
    Guan YF; Wang JZ; Ni HG; Zeng EY
    Environ Pollut; 2009 Feb; 157(2):618-24. PubMed ID: 18835507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A pesticide runoff model for simulating runoff losses of pesticides from agricultural lands.
    Li YR; Huang GH; Li YF; Struger J; Fischer JD
    Water Sci Technol; 2003; 47(1):33-40. PubMed ID: 12578171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pesticide distribution in an agricultural environment in Argentina.
    Loewy RM; Monza LB; Kirs VE; Savini MC
    J Environ Sci Health B; 2011; 46(8):662-70. PubMed ID: 21806463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of uncertainties in agricultural working schedules and Monte-Carlo evaluation of the model input in basin-scale runoff model analysis of herbicides.
    Matsui Y; Inoue T; Matsushita T; Yamada T; Yamamoto M; Sumigama Y
    Water Sci Technol; 2005; 51(3-4):329-37. PubMed ID: 15850206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California.
    Luo Y; Zhang X; Liu X; Ficklin D; Zhang M
    Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Variation of MCPA, metribuzine, methyltriazine-amine and glyphosate degradation, sorption, mineralization and leaching in different soil horizons.
    Jacobsen CS; van der Keur P; Iversen BV; Rosenberg P; Barlebo HC; Torp S; Vosgerau H; Juhler RK; Ernstsen V; Rasmussen J; Brinch UC; Jacobsen OH
    Environ Pollut; 2008 Dec; 156(3):794-802. PubMed ID: 18639963
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Input pathways and river load of pesticides in Germany--a national scale modeling assessment.
    Bach M; Huber A; Frede HG
    Water Sci Technol; 2001; 43(5):261-8. PubMed ID: 11379140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods.
    Boithias L; Sauvage S; Taghavi L; Merlina G; Probst JL; PĂ©rez JM
    J Hazard Mater; 2011 Nov; 196():210-9. PubMed ID: 21945686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparison of predicted and measured levels of runoff-related pesticide concentrations in small lowland streams on a landscape level.
    Berenzen N; Lentzen-Godding A; Probst M; Schulz H; Schulz R; Liess M
    Chemosphere; 2005 Feb; 58(5):683-91. PubMed ID: 15620762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulating concentration of bensulphuron-methyl in a drainage canal of a paddy block using a rice pesticide model.
    Phong TK; Hiramatsu K; Watanabe H
    Environ Technol; 2011 Jan; 32(1-2):69-81. PubMed ID: 21473270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model.
    Watanabe H; Takagi K; Vu SH
    Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Seasonal changes of macroinvertebrate communities in a stormwater wetland collecting pesticide runoff from a vineyard catchment (Alsace, France).
    Martin S; Bertaux A; Le Ber F; Maillard E; Imfeld G
    Arch Environ Contam Toxicol; 2012 Jan; 62(1):29-41. PubMed ID: 21656048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: model simulation for the herbicide pretilachlor.
    Phong TK; Vu SH; Ishihara S; Hiramatsu K; Watanabe H
    Pest Manag Sci; 2011 Jan; 67(1):70-6. PubMed ID: 20954170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Screening level analysis for monitoring pesticide in river water using a hydrological diffuse pollution model with limited input data.
    Matsui Y; Narita K; Inoue T; Matsushita T
    Water Sci Technol; 2006; 53(10):173-81. PubMed ID: 16838701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contribution by urban and agricultural pesticide uses to water contamination at the scale of the Marne watershed.
    Blanchoud H; Moreau-Guigon E; Farrugia F; Chevreuil M; Mouchel JM
    Sci Total Environ; 2007 Apr; 375(1-3):168-79. PubMed ID: 17258293
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Eleven-year trend in acetanilide pesticide degradates in the Iowa River, Iowa.
    Kalkhoff SJ; Vecchia AV; Capel PD; Meyer MT
    J Environ Qual; 2012; 41(5):1566-79. PubMed ID: 23099949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment.
    Ebise S; Inoue T
    Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.