These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 17562459)
1. Effect of Fe (III) on acid degradation of methylparathion. Manzanilla-Cano JA; Barceló-Quintal MH; Rendón-Osorio RB; Flores-Rodríguez J J Environ Sci Health B; 2007; 42(5):515-22. PubMed ID: 17562459 [TBL] [Abstract][Full Text] [Related]
2. Photochemical degradation of methylparathion in the presence of humic acid. Manzanilla-Cano JA; Barcelo-Quintal MH; Coral-Martinez TI J Environ Sci Health B; 2008 Sep; 43(7):546-52. PubMed ID: 18803108 [TBL] [Abstract][Full Text] [Related]
3. Effect of fulvic acid on the photochemical degradation of methylparathion. Manzanilla-Cano JA; Barceló-Quintal MH; Alcocer-Can Ldel C; Coral-Martínez TI J Environ Sci Health B; 2010 May; 45(4):274-8. PubMed ID: 20390963 [TBL] [Abstract][Full Text] [Related]
4. Electrochemical monitoring of methylparathion degradation in an acid aqueous medium in presence of Cu(II). Manzanilla-Cano JA; Barceló-Quintal MH; Reyes-Salas EO J Environ Sci Health B; 2004 May; 39(4):577-88. PubMed ID: 15473638 [TBL] [Abstract][Full Text] [Related]
5. Remarkably efficient hydrolysis of methylparathion catalyzed by [2-(2-pyridyl)phenyl-C,N]palladium(II) complexes. Kim M; Picot A; Gabbaï FP Inorg Chem; 2006 Jul; 45(14):5600-6. PubMed ID: 16813424 [TBL] [Abstract][Full Text] [Related]
6. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide. Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946 [TBL] [Abstract][Full Text] [Related]
7. Novel iron(III) porphyrazine complex. Complex speciation and reactions with NO and H2O2. Theodoridis A; Maigut J; Puchta R; Kudrik EV; van Eldik R Inorg Chem; 2008 Apr; 47(8):2994-3013. PubMed ID: 18351731 [TBL] [Abstract][Full Text] [Related]
8. pH-specific synthetic chemistry and solution studies in the binary system of iron(III) with the alpha-hydroxycarboxylate substrate quinic acid: potential relevance to iron chemistry in plant fluids. Menelaou M; Mateescu C; Zhao H; Rodriguez-Escudero I; Lalioti N; Sanakis Y; Simopoulos A; Salifoglou A Inorg Chem; 2009 Mar; 48(5):1844-56. PubMed ID: 19235948 [TBL] [Abstract][Full Text] [Related]
9. Catalase-peroxidase activity of iron(III)-TAML activators of hydrogen peroxide. Ghosh A; Mitchell DA; Chanda A; Ryabov AD; Popescu DL; Upham EC; Collins GJ; Collins TJ J Am Chem Soc; 2008 Nov; 130(45):15116-26. PubMed ID: 18928252 [TBL] [Abstract][Full Text] [Related]
10. Kinetic simulation studies on the transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)-porphyrin with hydrogen peroxide in aqueous solution. Saha TK; Karmaker S; Tamagake K Luminescence; 2003; 18(5):259-67. PubMed ID: 14587077 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate). Brausam A; Eigler S; Jux N; van Eldik R Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585 [TBL] [Abstract][Full Text] [Related]
12. Degradation and by-product formation of diazinon in water during UV and UV/H(2)O(2) treatment. Shemer H; Linden KG J Hazard Mater; 2006 Aug; 136(3):553-9. PubMed ID: 16436313 [TBL] [Abstract][Full Text] [Related]
13. Kinetics and mechanism of the degradation of methyl parathion in aqueous hydrogen sulfide solution: investigation of natural organic matter effects. Guo X; Jans U Environ Sci Technol; 2006 Feb; 40(3):900-6. PubMed ID: 16509335 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic studies on peroxide activation by a water-soluble iron(III)-porphyrin: implications for O-O bond activation in aqueous and nonaqueous solvents. Wolak M; van Eldik R Chemistry; 2007; 13(17):4873-83. PubMed ID: 17366654 [TBL] [Abstract][Full Text] [Related]
15. Use of electrochemical transient techniques to obtain thermodynamic and kinetic data on aqueous Fe(III)-1,6-dimethyl-4-hydroxy-3-pyridinecarboxylate and Fe(III)-4-hydroxy-2-methyl-3-pyridinecarboxylate complexes. Badocco D; Marcon M; Mondin A; Dean A; Di Marco VB; Pastore P Dalton Trans; 2009 Apr; (13):2415-22. PubMed ID: 19290376 [TBL] [Abstract][Full Text] [Related]
16. Transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)porphyrin with hydrogen peroxide in aqueous solution. Saha TK; Karmaker S; Tamagake K Luminescence; 2003; 18(3):162-72. PubMed ID: 12701092 [TBL] [Abstract][Full Text] [Related]
17. Removal of methyl parathion from water by electrochemically generated Fenton's reagent. Diagne M; Oturan N; Oturan MA Chemosphere; 2007 Jan; 66(5):841-8. PubMed ID: 16870230 [TBL] [Abstract][Full Text] [Related]
18. Degradation of trichloroethylene by Fe(II) chelated with cross-linked chitosan in a modified Fenton reaction. Lee Y; Lee W J Hazard Mater; 2010 Jun; 178(1-3):187-93. PubMed ID: 20129729 [TBL] [Abstract][Full Text] [Related]
19. Parameters affecting the decay of some organophosphorus pesticides: a study by high-performance liquid chromatography. Kaur I; Mathur RP; Tandon SN Biomed Chromatogr; 1997; 11(1):22-4. PubMed ID: 9051211 [TBL] [Abstract][Full Text] [Related]
20. Parathion degradation and its intermediate formation by Fenton process in neutral environment. Fan C; Tsui L; Liao MC Chemosphere; 2011 Jan; 82(2):229-36. PubMed ID: 21035166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]