These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17562472)

  • 1. On divide-and-conquer strategies for parsimony analysis of large data sets: Rec-I-DCM3 versus TNT.
    Goloboff PA; Pol D
    Syst Biol; 2007 Jun; 56(3):485-95. PubMed ID: 17562472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of large phylogenetic trees: a parallel approach.
    Du Z; Lin F; Roshan UW
    Comput Biol Chem; 2005 Aug; 29(4):273-80. PubMed ID: 16040277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hide and vanish: data sets where the most parsimonious tree is known but hard to find, and their implications for tree search methods.
    Goloboff PA
    Mol Phylogenet Evol; 2014 Oct; 79():118-31. PubMed ID: 24952317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative performance of supertree algorithms in large data sets using the soapberry family (Sapindaceae) as a case study.
    Buerki S; Forest F; Salamin N; Alvarez N
    Syst Biol; 2011 Jan; 60(1):32-44. PubMed ID: 21068445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rec-DCM-Eigen: reconstructing a less parsimonious but more accurate tree in shorter time.
    Kang S; Tang J; Schaeffer SW; Bader DA
    PLoS One; 2011; 6(8):e22483. PubMed ID: 21887219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRec-I-DCM3: a parallel framework for fast and accurate large-scale phylogeny reconstruction.
    Dotsenko Y; Coarfa C; Nakhleh L; Mellor-Crummey J; Roshan U
    Int J Bioinform Res Appl; 2006; 2(4):407-19. PubMed ID: 18048181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using tree diversity to compare phylogenetic heuristics.
    Sul SJ; Matthews S; Williams TL
    BMC Bioinformatics; 2009 Apr; 10 Suppl 4(Suppl 4):S3. PubMed ID: 19426451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trees of trees: an approach to comparing multiple alternative phylogenies.
    Nye TM
    Syst Biol; 2008 Oct; 57(5):785-94. PubMed ID: 18853364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SDM: a fast distance-based approach for (super) tree building in phylogenomics.
    Criscuolo A; Berry V; Douzery EJ; Gascuel O
    Syst Biol; 2006 Oct; 55(5):740-55. PubMed ID: 17060196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A divide-and-conquer approach to analyze underdetermined biochemical models.
    Kotte O; Heinemann M
    Bioinformatics; 2009 Feb; 25(4):519-25. PubMed ID: 19126574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the efficiency of searches for the maximum likelihood tree in a phylogenetic analysis of up to 150 nucleotide sequences.
    Morrison DA
    Syst Biol; 2007 Dec; 56(6):988-1010. PubMed ID: 18066931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating intraspecific "network" construction methods using simulated sequence data: do existing algorithms outperform the global maximum parsimony approach?
    Cassens I; Mardulyn P; Milinkovitch MC
    Syst Biol; 2005 Jun; 54(3):363-72. PubMed ID: 16012104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards improving searches for optimal phylogenies.
    Ford E; St John K; Wheeler WC
    Syst Biol; 2015 Jan; 64(1):56-65. PubMed ID: 25164916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions.
    Liu L; Pearl DK
    Syst Biol; 2007 Jun; 56(3):504-14. PubMed ID: 17562474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The MinMax Squeeze: guaranteeing a minimal tree for population data.
    Holland BR; Huber KT; Penny D; Moulton V
    Mol Biol Evol; 2005 Feb; 22(2):235-42. PubMed ID: 15483326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient non-dominated sorting method for evolutionary algorithms.
    Fang H; Wang Q; Tu YC; Horstemeyer MF
    Evol Comput; 2008; 16(3):355-84. PubMed ID: 18811246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rec-I-DCM3: a fast algorithmic technique for reconstructing large phylogenetic trees.
    Roshan UW; Moret BM; Warnow T; Williams TL
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():98-109. PubMed ID: 16448004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parsimony analysis of phylogenomic datasets (II): evaluation of PAUP*, MEGA and MPBoot.
    Goloboff PA; Catalano SA; Torres A
    Cladistics; 2022 Feb; 38(1):126-146. PubMed ID: 35049082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New approaches to phylogenetic tree search and their application to large numbers of protein alignments.
    Whelan S
    Syst Biol; 2007 Oct; 56(5):727-40. PubMed ID: 17849327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing the landscape: a new strategy for estimating large phylogenies.
    Quicke DL; Taylor J; Purvis A
    Syst Biol; 2001 Feb; 50(1):60-6. PubMed ID: 12116594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.