BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 17562651)

  • 41. The thermoluminescence glow curves of LiF:Mg,Ti: characteristics and mechanisms.
    Horowitz YS; Oster L
    Radiat Prot Dosimetry; 2024 Jun; 200(10):919-937. PubMed ID: 38851183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of high ambient temperature on glow-peak fading properties of LiF:Mg,Ti thermoluminescent dosemeters.
    Harvey JA; Kearfott KJ
    Radiat Prot Dosimetry; 2012 Apr; 149(2):109-15. PubMed ID: 21733861
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic modelling of the optically stimulated conversion of peaks 5a and 5 to peak 4 in LiF:Mg,Ti (TLD-100).
    Weizman Y; Horowitz YS; Oster L
    Radiat Prot Dosimetry; 2002; 100(1-4):131-4. PubMed ID: 12382845
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Further studies in the reduction of residual in Harshaw TLD-100H (LiF:Mg,Cu,P).
    Ramlo M; Moscovitch M; Rotunda JE
    Radiat Prot Dosimetry; 2007; 125(1-4):217-9. PubMed ID: 17416592
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimisation of the readout parameters when evaluating thermal neutron doses by TL dosimetry with LiF:Mg,Ti.
    German U; Weinstein M; Abraham A; Alfassi ZB
    Radiat Prot Dosimetry; 2007; 126(1-4):532-5. PubMed ID: 17513859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermoluminescence emission spectra for the LiF:Mg,Cu,Na,Si thermoluminescent materials with various concentrations of the dopants (3-D measurement).
    Lee JI; Lee D; Kim JL; Chang SY
    Radiat Prot Dosimetry; 2006; 119(1-4):293-9. PubMed ID: 16644972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of spectrally resolved thermoluminescence of LiF:Mg,Cu,P detectors by the surface fitting method using algorithm for unrestricted peak positions.
    Mandowska E; Mandowski A; Bilski P; Swiatek J
    Radiat Prot Dosimetry; 2006; 119(1-4):89-92. PubMed ID: 16614088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neutron dosimetry with 6LiF-rich TL sheet.
    Konnai A; Odano N; Nariyama N; Ohnishi S; Nakajima N; Yamamoto K; Kishi T; Ozasa N; Ishikawa Y
    Radiat Prot Dosimetry; 2006; 120(1-4):133-5. PubMed ID: 16709707
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of ionisation density on the thermoluminescence response (efficiency) of LiF:Mg,Ti and LiF:Mg,Cu,P.
    Horowitz Y; Olko P
    Radiat Prot Dosimetry; 2004; 109(4):331-48. PubMed ID: 15273352
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Further studies on the role of dopants in LiF:Mg,Cu,Si thermoluminescent material.
    Tang K; Fan H; Cui H; Zhu H; Liu Z
    Radiat Prot Dosimetry; 2015 Feb; 163(3):288-91. PubMed ID: 24966341
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermoluminescence solid-state nanodosimetry--the peak 5A/5 dosemeter.
    Fuks E; Horowitz YS; Horowitz A; Oster L; Marino S; Rainer M; Rosenfeld A; Datz H
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):416-26. PubMed ID: 21149323
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determination of LiF:Mg,Ti and LiF:Mg,Cu,P TL efficiency for X-rays and their application to Monte Carlo simulations of dosemeter response.
    Hranitzky C; Stadtmann H; Olko P
    Radiat Prot Dosimetry; 2006; 119(1-4):483-6. PubMed ID: 16822775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The composite structure of peak 5 in the glow curve of LiF:Mg,Ti (TLD-100): confirmation of peak 5a arising from a locally trapped electron-hole configuration.
    Horowitz YS; Oster L; Satinger D; Biderman S; Einav Y
    Radiat Prot Dosimetry; 2002; 100(1-4):123-6. PubMed ID: 12382843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A method to minimise the fading effects of LiF:Mg,Ti (TLD-600 and TLD-700) using a pre-heat technique.
    Lee Y; Won Y; Kang K
    Radiat Prot Dosimetry; 2015 Apr; 164(3):449-55. PubMed ID: 25301971
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glow curve analysis of composite peak 5 in LiF:Mg,Ti (TLD-100) using optical bleaching, thermal annealing and computerised glow curve deconvolution.
    Biderman S; Horowitz YS; Oster L; Einav Y; Dubi Y
    Radiat Prot Dosimetry; 2002; 101(1-4):69-72. PubMed ID: 12382707
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dosimetric properties of new cards with high-sensitivity MCP-N (LiF:Mg,Cu,P) detectors for Harshaw automatic reader.
    Budzanowski M; Bilski P; Olko P; Ryba E; Perle S; Majewski M
    Radiat Prot Dosimetry; 2007; 125(1-4):251-3. PubMed ID: 17020912
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of two extremity dosemeters based on LiF:Mg,Cu,P thin detectors for mixed beta-gamma fields.
    Ginjaume M; Pérez S; Ortega X; Duch MA
    Radiat Prot Dosimetry; 2006; 120(1-4):316-20. PubMed ID: 16644980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tissue-equivalent TL sheet dosimetry system for X- and gamma-ray dose mapping.
    Nariyama N; Konnai A; Ohnishi S; Odano N; Yamaji A; Ozasa N; Ishikawa Y
    Radiat Prot Dosimetry; 2006; 120(1-4):136-9. PubMed ID: 16614090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of heating rate and dose on trapping parameters of TLD-100 crystals.
    Caprile PF; Sánchez-Nieto B; Pino AM; Delgado JF
    Health Phys; 2013 Feb; 104(2):218-23. PubMed ID: 23274825
    [TBL] [Abstract][Full Text] [Related]  

  • 60. INVESTIGATION OF THE TL CHARACTERISTICS OF COMPOSITE PEAK 5 IN THE GLOW CURVE OF LIF:MG,TI (TLD-100) USING NATURALLY AND FURNACE-COOLED SAMPLES FOLLOWING THE 400°C PRE-IRRADIATION ANNEAL.
    Eliyahu I; Reshes G; Shapiro A; Biderman S; Oster L; Nemirovsky D; Sterenberg M; Ginzburg D; Horowitz YS; Herman B; Assor Y
    Radiat Prot Dosimetry; 2021 Nov; 196(1-2):53-59. PubMed ID: 34463339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.