BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17562865)

  • 21. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells.
    Huang CH; Tsai SJ; Wang YJ; Pan MH; Kao JY; Way TD
    Mol Nutr Food Res; 2009 Sep; 53(9):1156-65. PubMed ID: 19662644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of translational release factor eRF1a binding sites on eRF3 in Euplotes octocarinatus.
    Song L; Chai BF; Wang W; Liang AH
    Res Microbiol; 2006 Nov; 157(9):842-50. PubMed ID: 16963230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide mediates NMDA-induced persistent inhibition of protein synthesis through dephosphorylation of eukaryotic initiation factor 4E-binding protein 1 and eukaryotic initiation factor 4G proteolysis.
    Petegnief V; Font-Nieves M; Martín ME; Salinas M; Planas AM
    Biochem J; 2008 May; 411(3):667-77. PubMed ID: 18215131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polypeptide chain release factor eRF3 is a novel molecular partner of survivin.
    Xiao R; Gao Y; Shen Q; Li C; Chang W; Chai B
    Cell Biol Int; 2013 Apr; 37(4):359-69. PubMed ID: 23377885
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-terminal extension of Saccharomyces cerevisiae translation termination factor eRF3 influences the suppression efficiency of sup35 mutations.
    Volkov K; Osipov K; Valouev I; Inge-Vechtomov S; Mironova L
    FEMS Yeast Res; 2007 May; 7(3):357-65. PubMed ID: 17302942
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Molecular modeling of structure of eukaryotic ribosomal translation termination complex].
    Vorob'ev IuN; Kiselev LL
    Mol Biol (Mosk); 2007; 41(1):103-11. PubMed ID: 17380897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GTP-dependent structural rearrangement of the eRF1:eRF3 complex and eRF3 sequence motifs essential for PABP binding.
    Kononenko AV; Mitkevich VA; Atkinson GC; Tenson T; Dubovaya VI; Frolova LY; Makarov AA; Hauryliuk V
    Nucleic Acids Res; 2010 Jan; 38(2):548-58. PubMed ID: 19906736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat.
    Chotechuang N; Azzout-Marniche D; Bos C; Chaumontet C; Gausserès N; Steiler T; Gaudichon C; Tomé D
    Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1313-23. PubMed ID: 19738034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic alcohol feeding impairs mTOR(Ser 2448) phosphorylation in rat hearts.
    Vary TC; Deiter G; Lantry R
    Alcohol Clin Exp Res; 2008 Jan; 32(1):43-51. PubMed ID: 18028531
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Termination of prokaryotic and eukaryotic translation].
    Kutner J
    Postepy Biochem; 2007; 53(4):420-30. PubMed ID: 19024906
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of PKHD1 may cause S-phase entry via mTOR signaling pathway.
    Zheng R; Wang L; Fan J; Zhou Q
    Cell Biol Int; 2009 Sep; 33(9):926-33. PubMed ID: 19524688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear localization of eukaryotic class II release factor (eRF3): implication for the multifunction of eRF3 in ciliates Euplotes cell.
    Chai B; Wang W; Liang A
    Cell Biol Int; 2008 Mar; 32(3):353-7. PubMed ID: 18296078
    [TBL] [Abstract][Full Text] [Related]  

  • 33. eRF3a/GSPT1 12-GGC allele increases the susceptibility for breast cancer development.
    Malta-Vacas J; Chauvin C; Gonçalves L; Nazaré A; Carvalho C; Monteiro C; Bagrel D; Jean-Jean O; Brito M
    Oncol Rep; 2009 Jun; 21(6):1551-8. PubMed ID: 19424636
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Translation termination efficiency modulates ATF4 response by regulating ATF4 mRNA translation at 5' short ORFs.
    Ait Ghezala H; Jolles B; Salhi S; Castrillo K; Carpentier W; Cagnard N; Bruhat A; Fafournoux P; Jean-Jean O
    Nucleic Acids Res; 2012 Oct; 40(19):9557-70. PubMed ID: 22904092
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the regulatory motifs in eukaryotic initiation factor 4E-binding protein 1.
    Lee VH; Healy T; Fonseca BD; Hayashi A; Proud CG
    FEBS J; 2008 May; 275(9):2185-99. PubMed ID: 18384376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods for studying signal-dependent regulation of translation factor activity.
    Wang X; Proud CG
    Methods Enzymol; 2007; 431():113-42. PubMed ID: 17923233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of extracellular signal-related kinase signaling in esculetin induced G1 arrest of human leukemia U937 cells.
    Lee SH; Park C; Jin CY; Kim GY; Moon SK; Hyun JW; Lee WH; Choi BT; Kwon TK; Yoo YH; Choi YH
    Biomed Pharmacother; 2008 Dec; 62(10):723-9. PubMed ID: 18222060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Raptor-rictor axis in TGFbeta-induced protein synthesis.
    Das F; Ghosh-Choudhury N; Mahimainathan L; Venkatesan B; Feliers D; Riley DJ; Kasinath BS; Choudhury GG
    Cell Signal; 2008 Feb; 20(2):409-23. PubMed ID: 18068336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mammalian target of rapamycin-signaling pathway in regulating metabolism and growth.
    Yang X; Yang C; Farberman A; Rideout TC; de Lange CF; France J; Fan MZ
    J Anim Sci; 2008 Apr; 86(14 Suppl):E36-50. PubMed ID: 17998426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis.
    Shor B; Zhang WG; Toral-Barza L; Lucas J; Abraham RT; Gibbons JJ; Yu K
    Cancer Res; 2008 Apr; 68(8):2934-43. PubMed ID: 18413763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.