These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17562878)

  • 1. Effects of medullary Raphé stimulation on fictive lung ventilation during development in Rana catesbeiana.
    Belzile O; Gulemetova R; Kinkead R
    J Exp Biol; 2007 Jun; 210(Pt 12):2046-56. PubMed ID: 17562878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the respiratory response to hypoxia in the isolated brainstem of the bullfrog Rana catesbeiana.
    Winmill RE; Chen AK; Hedrick MS
    J Exp Biol; 2005 Jan; 208(Pt 2):213-22. PubMed ID: 15634841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noradrenergic modulation of respiratory motor output during tadpole development: Role of alpha-adrenoceptors.
    Fournier S; Kinkead R
    J Exp Biol; 2006 Sep; 209(Pt 18):3685-94. PubMed ID: 16943508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide changes its role as a modulator of respiratory motor activity during development in the bullfrog (Rana catesbeiana).
    Hedrick MS; Chen AK; Jessop KL
    Comp Biochem Physiol A Mol Integr Physiol; 2005 Oct; 142(2):231-40. PubMed ID: 16023875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental changes in central O2 chemoreflex in Rana catesbeiana: the role of noradrenergic modulation.
    Fournier S; Allard M; Roussin S; Kinkead R
    J Exp Biol; 2007 Sep; 210(Pt 17):3015-26. PubMed ID: 17704076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fictive gill and lung ventilation in the pre- and postmetamorphic tadpole brain stem.
    Torgerson CS; Gdovin MJ; Remmers JE
    J Neurophysiol; 1998 Oct; 80(4):2015-22. PubMed ID: 9772257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of pontine neurons in central O(2) chemoreflex during development in bullfrogs (Lithobates catesbeiana).
    Fournier S; Kinkead R
    Neuroscience; 2008 Aug; 155(3):983-96. PubMed ID: 18590803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental changes in the modulation of respiratory rhythm generation by extracellular K+ in the isolated bullfrog brainstem.
    Winmill RE; Hedrick MS
    J Neurobiol; 2003 Jun; 55(3):278-87. PubMed ID: 12717698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonergic modulation of respiratory motor output during tadpole development.
    Kinkead R; Belzile O; Gulemetova R
    J Appl Physiol (1985); 2002 Sep; 93(3):936-46. PubMed ID: 12183489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the respiratory central pattern generator by chloride-dependent inhibition during development in the bullfrog (Rana catesbeiana).
    Broch L; Morales RD; Sandoval AV; Hedrick MS
    J Exp Biol; 2002 Apr; 205(Pt 8):1161-9. PubMed ID: 11919275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-HT1A/1B, 5-HT6, and 5-HT7 serotonergic receptors recruitment in tonic-clonic seizure-induced antinociception: role of dorsal raphe nucleus.
    Freitas RL; Ferreira CM; Urbina MA; Mariño AU; Carvalho AD; Butera G; de Oliveira AM; Coimbra NC
    Exp Neurol; 2009 May; 217(1):16-24. PubMed ID: 19416688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corticosterone promotes emergence of fictive air breathing in Xenopus laevis Daudin tadpole brainstems.
    Fournier S; Dubé PL; Kinkead R
    J Exp Biol; 2012 Apr; 215(Pt 7):1144-50. PubMed ID: 22399659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of prevention of lung inflation on metamorphosis and respiration in the developing bullfrog tadpole, Rana catesbeiana.
    Gdovin MJ; Jackson VV; Zamora DA; Leiter JC
    J Exp Zool A Comp Exp Biol; 2006 Apr; 305(4):335-47. PubMed ID: 16493648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Ontogeny of respiratory muscle control. Evidence from the amphibian model].
    Straus C
    Rev Mal Respir; 2000 Jun; 17(2 Pt 2):585-90. PubMed ID: 10939119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: electrophysiological and immunohistochemical studies in rats.
    Cao Y; Matsuyama K; Fujito Y; Aoki M
    Neurosci Res; 2006 Nov; 56(3):322-31. PubMed ID: 16962678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of pre- and post-synaptic serotonergic receptors of dorsal raphe nucleus neural network in the control of the sweet-substance-induced analgesia in adult Rattus norvegicus (Rodentia, Muridae).
    Miyase CI; Kishi R; de Freitas RL; Paz DA; Coimbra NC
    Neurosci Lett; 2005 May; 379(3):169-73. PubMed ID: 15843057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central Hypoxia Elicits Long-Term Expression of the Lung Motor Pattern in Pre-metamorphic Lithobates Catesbeianus.
    Janes TA; Kinkead R
    Adv Exp Med Biol; 2018; 1071():75-82. PubMed ID: 30357736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistent augmentation of fictive air breathing by hypoxia: An in vitro study of the role of GABA
    Janes TA; Guay LM; Fournier S; Kinkead R
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Jul; 281():111437. PubMed ID: 37088410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressor effects elicited by stimulation within the medullary raphe nuclei of the guinea pig (Cavia porcellus).
    Almada GL; Pires JG; Dantas MA; Futuro-Neto HA
    Acta Physiol Pharmacol Ther Latinoam; 1997; 47(4):229-36. PubMed ID: 9504183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of central chemoreception during fictive gill and lung ventilation in an in vitro brainstem preparation of Rana catesbeiana.
    Torgerson C; Gdovin M; Remmers J
    J Exp Biol; 1997; 200(Pt 15):2063-72. PubMed ID: 9319973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.