These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17562894)

  • 1. Behavioral context-dependent modulation of descending statocyst pathways during free walking, as revealed by optical telemetry in crayfish.
    Hama N; Tsuchida Y; Takahata M
    J Exp Biol; 2007 Jun; 210(Pt 12):2199-211. PubMed ID: 17562894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of leg movements on the synaptic activity of descending statocyst interneurons in crayfish, Procambarus clarkii.
    Hama N; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Dec; 189(12):877-88. PubMed ID: 14593487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of statocyst input to local interneurons by behavioral condition in the crayfish brain.
    Hama N; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Aug; 191(8):747-59. PubMed ID: 15856256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple gate control of the descending statocyst-motor pathway in the crayfish Procambarus clarkii Girard.
    Takahata M; Murayama M
    J Comp Physiol A; 1992 Apr; 170(4):463-77. PubMed ID: 1625219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic postural behavior in the crayfish, Procambarus clarkii: properties of the pattern-initiating network.
    Moore D; Larimer JL
    J Exp Zool; 1993 Nov; 267(4):404-15. PubMed ID: 8270893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optical telemetry system for underwater recording of electromyogram and neuronal activity from non-tethered crayfish.
    Tsuchida Y; Hama N; Takahata M
    J Neurosci Methods; 2004 Aug; 137(1):103-9. PubMed ID: 15196832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the size and directional output of functional groups of interneurons underlying abdominal positioning behaviors in crayfish.
    Brewer LD; Larimer JL
    J Exp Zool; 1997 Jun; 278(3):119-32. PubMed ID: 9181692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disynaptic and polysynaptic statocyst pathways to an identified set of premotor nonspiking interneurons in the crayfish brain.
    Fujisawa K; Takahata M
    J Comp Neurol; 2007 Aug; 503(4):560-72. PubMed ID: 17534936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental modification of stepping course in spontaneously initiated locomotor behavior in the crayfish Procambarus clarkii Girard.
    Yamane S; Takahata M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Feb; 188(1):13-23. PubMed ID: 11935227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic electromyographic analysis of circadian locomotor activity in crayfish.
    Tomina Y; Kibayashi A; Yoshii T; Takahata M
    Behav Brain Res; 2013 Jul; 249():90-103. PubMed ID: 23631885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lightweight telemetry system for recording neuronal activity in freely behaving small animals.
    Schregardus DS; Pieneman AW; Ter Maat A; Jansen RF; Brouwer TJ; Gahr ML
    J Neurosci Methods; 2006 Jul; 155(1):62-71. PubMed ID: 16490257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The behavioral reactions of fresh-water crayfish to sensory exposures: the motor components].
    Burmistrov IuM; Shuranova ZhP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(2):311-20. PubMed ID: 7597828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Morphofunctional study of statocyst of the Cuban crayfish Procambarus cubensis].
    Kharkevich TA; Gorgiladze GI
    Zh Evol Biokhim Fiziol; 2000; 36(1):54-8. PubMed ID: 10752160
    [No Abstract]   [Full Text] [Related]  

  • 14. Dual sensory-motor function for a molluskan statocyst network.
    Levi R; Varona P; Arshavsky YI; Rabinovich MI; Selverston AI
    J Neurophysiol; 2004 Jan; 91(1):336-45. PubMed ID: 14507988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral transition of crayfish avoidance reaction in response to uropod stimulation.
    Nagayama T; Takahata M; Hisada M
    Exp Biol; 1986; 46(2):75-82. PubMed ID: 3817117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of sensory motor reflexes in 2 G exposed rats.
    Wubbels R; Bouët V; de Jong H; Gramsbergen A
    J Gravit Physiol; 2004 Jul; 11(2):P21-2. PubMed ID: 16231433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intersegmental coordination of walking movements in stick insects.
    Ludwar BCh; Göritz ML; Schmidt J
    J Neurophysiol; 2005 Mar; 93(3):1255-65. PubMed ID: 15525808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural control of a cyclic postural behavior in the crayfish, Procambarus clarkii: the pattern-initiating interneurons.
    Moore D; Larimer JL
    J Comp Physiol A; 1987 Feb; 160(2):169-79. PubMed ID: 3572847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel miniature telemetric system for recording EEG activity in freely moving rats.
    Lapray D; Bergeler J; Dupont E; Thews O; Luhmann HJ
    J Neurosci Methods; 2008 Feb; 168(1):119-26. PubMed ID: 17983664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural basis of a simple behavior: abdominal positioning in crayfish.
    Larimer JL; Moore D
    Microsc Res Tech; 2003 Feb; 60(3):346-59. PubMed ID: 12539164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.