These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 17563313)

  • 21. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features.
    Li ZC; Lai YH; Chen LL; Zhou X; Dai Z; Zou XY
    Anal Chim Acta; 2012 Mar; 718():32-41. PubMed ID: 22305895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ACoM: A classification method for elementary flux modes based on motif finding.
    Pérès S; Vallée F; Beurton-Aimar M; Mazat JP
    Biosystems; 2011 Mar; 103(3):410-9. PubMed ID: 21145369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graph isomorphisms and automorphisms via spectral signatures.
    Raviv D; Kimmel R; Bruckstein AM
    IEEE Trans Pattern Anal Mach Intell; 2013 Aug; 35(8):1985-93. PubMed ID: 23787348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of dynamic expansion tree for finding large network motifs in biological networks.
    Patra S; Mohapatra A
    PeerJ; 2019; 7():e6917. PubMed ID: 31149400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the discovery of group-consistent graph substructure patterns from brain networks.
    Iakovidou ND; Dimitriadis SI; Laskaris NA; Tsichlas K; Manolopoulos Y
    J Neurosci Methods; 2013 Mar; 213(2):204-13. PubMed ID: 23274947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel method for comparing topological models of protein structures enhanced with ligand information.
    Veeramalai M; Gilbert D
    Bioinformatics; 2008 Dec; 24(23):2698-705. PubMed ID: 18842602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discovering interesting molecular substructures for molecular classification.
    Lam WW; Chan KC
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):77-89. PubMed ID: 20650702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combinatorial docking approach for structure prediction of large proteins and multi-molecular assemblies.
    Inbar Y; Benyamini H; Nussinov R; Wolfson HJ
    Phys Biol; 2005 Nov; 2(4):S156-65. PubMed ID: 16280621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved algorithms for enumerating tree-like chemical graphs with given path frequency.
    Ishida Y; Zhao L; Nagamochi H; Akutsu T
    Genome Inform; 2008; 21():53-64. PubMed ID: 19425147
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Counting motifs in dynamic networks.
    Mukherjee K; Hasan MM; Boucher C; Kahveci T
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):6. PubMed ID: 29671392
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs.
    Bandyopadhyay D; Huan J; Liu J; Prins J; Snoeyink J; Wang W; Tropsha A
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1137-43. PubMed ID: 20570776
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topological generalizations of network motifs.
    Kashtan N; Itzkovitz S; Milo R; Alon U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031909. PubMed ID: 15524551
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 'periodic table' for protein structures.
    Taylor WR
    Nature; 2002 Apr; 416(6881):657-60. PubMed ID: 11948354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review on models and algorithms for motif discovery in protein-protein interaction networks.
    Ciriello G; Guerra C
    Brief Funct Genomic Proteomic; 2008 Mar; 7(2):147-56. PubMed ID: 18443014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of generic spaced motifs using submotif pattern mining.
    Wijaya E; Rajaraman K; Yiu SM; Sung WK
    Bioinformatics; 2007 Jun; 23(12):1476-85. PubMed ID: 17483509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extending the Applicability of Graphlets to Directed Networks.
    Aparicio D; Ribeiro P; Silva F
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1302-1315. PubMed ID: 27362986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient extraction of mapping rules of atoms from enzymatic reaction data.
    Akutsu T
    J Comput Biol; 2004; 11(2-3):449-62. PubMed ID: 15285901
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Algorithmic computation of knot polynomials of secondary structure elements of proteins.
    Emmert-Streib F
    J Comput Biol; 2006 Oct; 13(8):1503-12. PubMed ID: 17061925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A robust elicitation algorithm for discovering DNA motifs using fuzzy self-organizing maps.
    Wang D; Tapan S
    IEEE Trans Neural Netw Learn Syst; 2013 Oct; 24(10):1677-88. PubMed ID: 24808603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.