These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 17563492)
1. Modeling energy deposition in trabecular spongiosa using the Monte Carlo code PENELOPE. Gersh JA; Dingfelder M; Toburen LH Health Phys; 2007 Jul; 93(1):47-59. PubMed ID: 17563492 [TBL] [Abstract][Full Text] [Related]
2. A three-dimensional transport model for determining absorbed fractions of energy for electrons within trabecular bone. Bouchet LG; Jokisch DW; Bolch WE J Nucl Med; 1999 Nov; 40(11):1947-66. PubMed ID: 10565793 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo modelling of energy deposition in trabecular bone. Gersh JA; Dingfelder M; Toburen LH Radiat Prot Dosimetry; 2006; 122(1-4):549-50. PubMed ID: 17132659 [TBL] [Abstract][Full Text] [Related]
4. A three-dimensional transport model for determining absorbed fractions of energy for electrons within cortical bone. Bouchet LG; Bolch WE J Nucl Med; 1999 Dec; 40(12):2115-24. PubMed ID: 10616894 [TBL] [Abstract][Full Text] [Related]
5. Considerations of marrow cellularity in 3-dimensional dosimetric models of the trabecular skeleton. Bolch WE; Patton PW; Rajon DA; Shah AP; Jokisch DW; Inglis BA J Nucl Med; 2002 Jan; 43(1):97-108. PubMed ID: 11801712 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo determination of the conversion coefficients Hp(3)/Ka in a right cylinder phantom with 'PENELOPE' code. Comparison with 'MCNP' simulations. Daures J; Gouriou J; Bordy JM Radiat Prot Dosimetry; 2011 Mar; 144(1-4):37-42. PubMed ID: 21242167 [TBL] [Abstract][Full Text] [Related]
7. Subcellular S-factors for low-energy electrons: a comparison of Monte Carlo simulations and continuous-slowing-down calculations. Emfietzoglou D; Kostarelos K; Hadjidoukas P; Bousis C; Fotopoulos A; Pathak A; Nikjoo H Int J Radiat Biol; 2008 Dec; 84(12):1034-44. PubMed ID: 19061127 [TBL] [Abstract][Full Text] [Related]
8. An image-based skeletal dosimetry model for the ICRP reference newborn--internal electron sources. Pafundi D; Rajon D; Jokisch D; Lee C; Bolch W Phys Med Biol; 2010 Apr; 55(7):1785-814. PubMed ID: 20208096 [TBL] [Abstract][Full Text] [Related]
9. Calculation of absorbed fractions to human skeletal tissues due to alpha particles using the Monte Carlo and 3-D chord-based transport techniques. Hunt JG; Watchman CJ; Bolch WE Radiat Prot Dosimetry; 2007; 127(1-4):223-6. PubMed ID: 17569685 [TBL] [Abstract][Full Text] [Related]
10. A Monte Carlo study of cellular S-factors for 1 keV to 1 MeV electrons. Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H Phys Med Biol; 2009 Aug; 54(16):5023-38. PubMed ID: 19652289 [TBL] [Abstract][Full Text] [Related]
11. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons. Xie T; Han D; Liu Y; Sun W; Liu Q Med Phys; 2010 May; 37(5):2167-78. PubMed ID: 20527551 [TBL] [Abstract][Full Text] [Related]
12. Re-evaluation of absorbed fractions for photons and electrons in spheres of various sizes. Stabin MG; Konijnenberg MW J Nucl Med; 2000 Jan; 41(1):149-60. PubMed ID: 10647618 [TBL] [Abstract][Full Text] [Related]
13. S values for radionuclides localized within the skeleton. Bouchet LG; Bolch WE; Howell RW; Rao DV J Nucl Med; 2000 Jan; 41(1):189-212. PubMed ID: 10647623 [TBL] [Abstract][Full Text] [Related]
14. Five pediatric head and brain mathematical models for use in internal dosimetry. Bouchet LG; Bolch WE J Nucl Med; 1999 Aug; 40(8):1327-36. PubMed ID: 10450685 [TBL] [Abstract][Full Text] [Related]
15. Photon and electron absorbed fractions calculated from a new tomographic rat model. Peixoto PH; Vieira JW; Yoriyaz H; Lima FR Phys Med Biol; 2008 Oct; 53(19):5343-55. PubMed ID: 18758003 [TBL] [Abstract][Full Text] [Related]
16. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN. Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581 [TBL] [Abstract][Full Text] [Related]
17. Cellular dosimetry calculations for Strontium-90 using Monte Carlo code PENELOPE. Hocine N; Farlay D; Boivin G; Franck D; Agarande M Int J Radiat Biol; 2014 Nov; 90(11):953-8. PubMed ID: 25134542 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo simulation of age-dependent radiation dose from alpha- and beta-emitting radionuclides to critical trabecular bone and bone marrow targets. Dant JT; Richardson RB; Nie LH Phys Med Biol; 2013 May; 58(10):3301-19. PubMed ID: 23615276 [TBL] [Abstract][Full Text] [Related]
19. Internal dose to active marrow and endosteum from radioactive iodine. Hoseinian-Azghadi E; Rafat-Motavalli L; Miri-Hakimabad H Radiat Prot Dosimetry; 2015 Apr; 164(3):291-7. PubMed ID: 25157198 [TBL] [Abstract][Full Text] [Related]
20. Fluence to effective dose conversion coefficients calculated for monoenergetic electrons up to 200 MeV in partial exposure geometries. Kitaichi M; Katagiri M; Hikoji M; Iwai S; Sumiyoshi T; Sawamura S Radiat Prot Dosimetry; 2004; 112(3):345-58. PubMed ID: 15494361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]