These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1756415)

  • 1. [Long ascending fibers in the dorsal column of a teleost fish: a disynaptic pathway connecting sense organs to cerebellum].
    Szabo T; Libouban S; Ravaille-Véron M
    C R Acad Sci III; 1991; 313(9):413-20. PubMed ID: 1756415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A well defined spinocerebellar system in the weakly electric teleost fish Gnathonemus petersii. A tracing and immuno-histochemical study.
    Szabo T; Libouban S; Denizot JP
    Arch Ital Biol; 1990 Jul; 128(2-4):229-47. PubMed ID: 1702609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Central projections of the octavolateralis nerves of the clearnose skate, Raja eglanteria.
    Koester DM
    J Comp Neurol; 1983 Dec; 221(2):199-215. PubMed ID: 6655082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peripheral configuration and central projections of the lateral line system in Astronotus ocellatus (Cichlidae): a nonelectroreceptive teleost.
    Meredith GE
    J Comp Neurol; 1984 Sep; 228(3):342-58. PubMed ID: 6480916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferent and efferent connections of cerebellar lobe C1 of the mormyrid fish Gnathonemus petersi: an HRP study.
    Meek J; Nieuwenhuys R; Elsevier D
    J Comp Neurol; 1986 Mar; 245(3):319-41. PubMed ID: 3958249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual and electrosensory circuits of the diencephalon in mormyrids: an evolutionary perspective.
    Wullimann MF; Northcutt RG
    J Comp Neurol; 1990 Jul; 297(4):537-52. PubMed ID: 2384612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laminar organization of the afferent and efferent systems of the torus semicircularis of gymnotiform fish: morphological substrates for parallel processing in the electrosensory system.
    Carr CE; Maler L; Heiligenberg W; Sas E
    J Comp Neurol; 1981 Dec; 203(4):649-70. PubMed ID: 7035506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organization of the primary projections of the lateral line nerves in the lamprey Lampetra japonica.
    Koyama H; Kishida R; Goris RC; Kusunoki T
    J Comp Neurol; 1990 May; 295(2):277-89. PubMed ID: 2358517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Golgi study of the cell types of the dorsal torus semicircularis of the electric fish Eigenmannia: functional and morphological diversity in the midbrain.
    Carr CE; Maler L
    J Comp Neurol; 1985 May; 235(2):207-40. PubMed ID: 3998210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemical study.
    Tan J; Gerrits NM; Nanhoe R; Simpson JI; Voogd J
    J Comp Neurol; 1995 May; 356(1):23-50. PubMed ID: 7543121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferent and efferent connections of the cerebellum of the chondrostean Acipenser baeri: a carbocyanine dye (DiI) tracing study.
    Huesa G; Anadón R; Yáñez J
    J Comp Neurol; 2003 Jun; 460(3):327-44. PubMed ID: 12692853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central organization of eighth nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish.
    Finger TE; Tong SL
    J Comp Neurol; 1984 Oct; 229(1):129-51. PubMed ID: 6490974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections ascending from the spinal cord to the brain in petromyzontid and myxinoid agnathans.
    Ronan M; Northcutt RG
    J Comp Neurol; 1990 Jan; 291(4):491-508. PubMed ID: 2329187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mormyrid brainstem. I. Distribution of brainstem neurones projecting to the spinal cord in Gnathonemus petersii. An HRP study.
    Hlavacek M; Tahar M; Libouban S; Szabo T
    J Hirnforsch; 1984; 25(6):603-15. PubMed ID: 6526990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central projections of the lateral line nerves in the shovelnose sturgeon.
    New JG; Northcutt RG
    J Comp Neurol; 1984 May; 225(1):129-40. PubMed ID: 6725636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the electrosensory nervous system of Eigenmannia (gymnotiformes): II. The electrosensory lateral line lobe, midbrain, and cerebellum.
    Lannoo MJ; Vischer HA; Maler L
    J Comp Neurol; 1990 Apr; 294(1):37-58. PubMed ID: 2324333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog.
    Marsala J; Lukácová N; Sulla I; Wohlfahrt P; Marsala M
    Exp Neurol; 2005 Sep; 195(1):161-78. PubMed ID: 15979072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Afferent and efferent connections of cerebellar lobe C3 of the mormyrid fish Gnathonemus petersi: an HRP study.
    Meek J; Nieuwenhuys R; Elsevier D
    J Comp Neurol; 1986 Mar; 245(3):342-58. PubMed ID: 2870092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase.
    Roppolo JR; Nadelhaft I; de Groat WC
    J Comp Neurol; 1985 Apr; 234(4):475-88. PubMed ID: 3988996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.