These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 17564382)
1. Potential of anaerobic digestion for mitigation of greenhouse gas emissions and production of renewable energy from agriculture: barriers and incentives to widespread adoption in Europe. Banks CJ; Salter AM; Chesshire M Water Sci Technol; 2007; 55(10):165-73. PubMed ID: 17564382 [TBL] [Abstract][Full Text] [Related]
2. Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Marañón E; Salter AM; Castrillón L; Heaven S; Fernández-Nava Y Waste Manag; 2011 Aug; 31(8):1745-51. PubMed ID: 21504844 [TBL] [Abstract][Full Text] [Related]
3. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective. Tilche A; Galatola M Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917 [TBL] [Abstract][Full Text] [Related]
4. Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Battini F; Agostini A; Boulamanti AK; Giuntoli J; Amaducci S Sci Total Environ; 2014 May; 481():196-208. PubMed ID: 24598150 [TBL] [Abstract][Full Text] [Related]
5. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy--a life cycle perspective. De Vries JW; Vinken TM; Hamelin L; De Boer IJ Bioresour Technol; 2012 Dec; 125():239-48. PubMed ID: 23026340 [TBL] [Abstract][Full Text] [Related]
6. An evaluation of the social and private efficiency of adoption: anaerobic digesters and greenhouse gas mitigation. Manning DT; Hadrich JC J Environ Manage; 2015 May; 154():70-7. PubMed ID: 25706409 [TBL] [Abstract][Full Text] [Related]
7. The role of sustainable agriculture and renewable-resource management in reducing greenhouse-gas emissions and increasing sinks in China and India. Pretty JN; Ball AS; Xiaoyun L; Ravindranath NH Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1741-61. PubMed ID: 12460495 [TBL] [Abstract][Full Text] [Related]
8. Anaerobic digestion as a sustainable solution for biosolids management by the Montreal metropolitan community. Frigon JC; Guiot SR Water Sci Technol; 2005; 52(1-2):561-6. PubMed ID: 16180478 [TBL] [Abstract][Full Text] [Related]
9. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R; Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [TBL] [Abstract][Full Text] [Related]
10. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity. Wang G; Gavala HN; Skiadas IV; Ahring BK Waste Manag; 2009 Nov; 29(11):2830-5. PubMed ID: 19666217 [TBL] [Abstract][Full Text] [Related]
11. Anaerobic co-digestion plants for the revaluation of agricultural waste: Sustainable location sites from a GIS analysis. Villamar CA; Rivera D; Aguayo M Waste Manag Res; 2016 Apr; 34(4):316-26. PubMed ID: 26862147 [TBL] [Abstract][Full Text] [Related]
12. Biogas production from anaerobic waste stabilisation ponds treating dairy and piggery wastewater in New Zealand. Park JB; Craggs RJ Water Sci Technol; 2007; 55(11):257-64. PubMed ID: 17591219 [TBL] [Abstract][Full Text] [Related]
13. Methane production in a 100-L upflow bioreactor by anaerobic digestion of farm waste. Borole AP; Klasson KT; Ridenour W; Holland J; Karim K; Al-Dahhan MH Appl Biochem Biotechnol; 2006 Mar; 131(1-3):887-96. PubMed ID: 18563663 [TBL] [Abstract][Full Text] [Related]
14. Methane production in a 100-L upflow bioreactor by anaerobic digestion of farm waste. Borole AP; Klasson KT; Ridenour W; Holland J; Karim K; Al-Dahhan MH Appl Biochem Biotechnol; 2006; 129-132():887-96. PubMed ID: 16915697 [TBL] [Abstract][Full Text] [Related]
15. Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes. Edelmann W; Baier U; Engeli H Water Sci Technol; 2005; 52(1-2):203-8. PubMed ID: 16180429 [TBL] [Abstract][Full Text] [Related]
16. Anaerobic digestion: impact of future greenhouse gases mitigation policies on methane generation and usage. Greenfield PF; Batstone DJ Water Sci Technol; 2005; 52(1-2):39-47. PubMed ID: 16180407 [TBL] [Abstract][Full Text] [Related]
17. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Chae KJ; Jang A; Yim SK; Kim IS Bioresour Technol; 2008 Jan; 99(1):1-6. PubMed ID: 17306978 [TBL] [Abstract][Full Text] [Related]
18. Net greenhouse gas emissions from manure management using anaerobic digestion technology in a beef cattle feedlot in Brazil. Costa Junior C; Cerri CE; Pires AV; Cerri CC Sci Total Environ; 2015 Feb; 505():1018-25. PubMed ID: 25461102 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic co-digestion of recalcitrant agricultural wastes: Characterizing of biochemical parameters of digestate and its impacts on soil ecosystem. Muscolo A; Settineri G; Papalia T; Attinà E; Basile C; Panuccio MR Sci Total Environ; 2017 May; 586():746-752. PubMed ID: 28214122 [TBL] [Abstract][Full Text] [Related]
20. Integration of on-farm biodiesel production with anaerobic digestion to maximise energy yield and greenhouse gas savings from process and farm residues. Heaven S; Salter AM; Banks CJ Bioresour Technol; 2011 Sep; 102(17):7784-93. PubMed ID: 21719281 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]